基于YOLOv3方法的多面罩佩戴者检测

Cheng Xiao Ge, M. A. As’ari, Nur Anis Jasmin Sufri
{"title":"基于YOLOv3方法的多面罩佩戴者检测","authors":"Cheng Xiao Ge, M. A. As’ari, Nur Anis Jasmin Sufri","doi":"10.11591/ijai.v12.i1.pp384-393","DOIUrl":null,"url":null,"abstract":"The coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by the SARS-CoV-2 coronavirus. In breaking the transmission chain of SARS-CoV-2, the government has made it compulsory for the people to wear a mask in public places to prevent COVID-19 transmission. Hence, an automated face mask detection is crucial to facilitate the monitoring process in ensuring people to wear a face mask in public. This project aims to develop an automated face and face mask detection for multiple people by applying deep learning-based object detection algorithm you only look once version 3 (YOLOv3). YOLOv3 object detection algorithm was concatenated with different backbones including ResNet-50 and Darknet-53 to develop the face and face mask detection model. Datasets were collected from online resources including Kaggle and Github and the images were filtered and labelled accordingly. The models were trained on 4393 images and evaluated based on precision, recall, mean average precision and the detection time. In conclusion, DarkNet53_YOLOv3 was chosen as the better model compared to ResNet50_YOLOv3 model with its good performance on accuracy with a mAP of 95.94% and a fast detection speed with a detection time of 50 seconds on 776 images. ","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple face mask wearer detection based on YOLOv3 approach\",\"authors\":\"Cheng Xiao Ge, M. A. As’ari, Nur Anis Jasmin Sufri\",\"doi\":\"10.11591/ijai.v12.i1.pp384-393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by the SARS-CoV-2 coronavirus. In breaking the transmission chain of SARS-CoV-2, the government has made it compulsory for the people to wear a mask in public places to prevent COVID-19 transmission. Hence, an automated face mask detection is crucial to facilitate the monitoring process in ensuring people to wear a face mask in public. This project aims to develop an automated face and face mask detection for multiple people by applying deep learning-based object detection algorithm you only look once version 3 (YOLOv3). YOLOv3 object detection algorithm was concatenated with different backbones including ResNet-50 and Darknet-53 to develop the face and face mask detection model. Datasets were collected from online resources including Kaggle and Github and the images were filtered and labelled accordingly. The models were trained on 4393 images and evaluated based on precision, recall, mean average precision and the detection time. In conclusion, DarkNet53_YOLOv3 was chosen as the better model compared to ResNet50_YOLOv3 model with its good performance on accuracy with a mAP of 95.94% and a fast detection speed with a detection time of 50 seconds on 776 images. \",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i1.pp384-393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp384-393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

2019冠状病毒病(新冠肺炎)是一种由SARS-CoV-2冠状病毒引起的高度传染性疾病。为了打破SARS-CoV-2的传播链,政府强制要求人们在公共场所戴口罩,以防止新冠肺炎传播。因此,自动口罩检测对于促进监测过程至关重要,以确保人们在公共场合佩戴口罩。该项目旨在通过应用基于深度学习的对象检测算法——你只看一次版本3(YOLOv3)——为多人开发一种自动人脸和面罩检测。YOLOv3目标检测算法与ResNet-50和Darknet-53等不同骨干网连接,开发了人脸和面罩检测模型。数据集是从包括Kaggle和Github在内的在线资源中收集的,并对图像进行相应的过滤和标记。模型在4393张图像上进行了训练,并根据精度、召回率、平均精度和检测时间进行了评估。总之,与ResNet50_YOLOv3模型相比,DarkNet53_YOLOv3模型被选为更好的模型,其准确率高达95.94%,检测速度快,对776张图像的检测时间为50秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple face mask wearer detection based on YOLOv3 approach
The coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by the SARS-CoV-2 coronavirus. In breaking the transmission chain of SARS-CoV-2, the government has made it compulsory for the people to wear a mask in public places to prevent COVID-19 transmission. Hence, an automated face mask detection is crucial to facilitate the monitoring process in ensuring people to wear a face mask in public. This project aims to develop an automated face and face mask detection for multiple people by applying deep learning-based object detection algorithm you only look once version 3 (YOLOv3). YOLOv3 object detection algorithm was concatenated with different backbones including ResNet-50 and Darknet-53 to develop the face and face mask detection model. Datasets were collected from online resources including Kaggle and Github and the images were filtered and labelled accordingly. The models were trained on 4393 images and evaluated based on precision, recall, mean average precision and the detection time. In conclusion, DarkNet53_YOLOv3 was chosen as the better model compared to ResNet50_YOLOv3 model with its good performance on accuracy with a mAP of 95.94% and a fast detection speed with a detection time of 50 seconds on 776 images. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1