使用文本错误报告预测软件错误的故障类别

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2022-09-01 DOI:10.1016/j.array.2022.100189
Thomas Hirsch, Birgit Hofer
{"title":"使用文本错误报告预测软件错误的故障类别","authors":"Thomas Hirsch,&nbsp;Birgit Hofer","doi":"10.1016/j.array.2022.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Debugging is a time-consuming and expensive process. Developers have to select appropriate tools, methods and approaches in order to efficiently reproduce, localize and fix bugs. These choices are based on the developers’ assessment of the type of fault for a given bug report. This paper proposes a machine learning (ML) based approach that predicts the fault type for a given textual bug report. We built a dataset from 70+ projects for training and evaluation of our approach. Further, we performed a user study to establish a baseline for non-expert human performance on this task. Our models, incorporating our custom preprocessing approaches, reach up to 0.69% macro average F1 score on this bug classification problem. We demonstrate inter-project transferability of our approach. Further, we identify and discuss issues and limitations of ML classification approaches applied on textual bug reports. Our models can support researchers in data collection efforts, as for example bug benchmark creation. In future, such models could aid inexperienced developers in debugging tool selection, helping save time and resources.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"15 ","pages":"Article 100189"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259000562200042X/pdfft?md5=d85c4e5667d78881a25943827c972501&pid=1-s2.0-S259000562200042X-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Using textual bug reports to predict the fault category of software bugs\",\"authors\":\"Thomas Hirsch,&nbsp;Birgit Hofer\",\"doi\":\"10.1016/j.array.2022.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Debugging is a time-consuming and expensive process. Developers have to select appropriate tools, methods and approaches in order to efficiently reproduce, localize and fix bugs. These choices are based on the developers’ assessment of the type of fault for a given bug report. This paper proposes a machine learning (ML) based approach that predicts the fault type for a given textual bug report. We built a dataset from 70+ projects for training and evaluation of our approach. Further, we performed a user study to establish a baseline for non-expert human performance on this task. Our models, incorporating our custom preprocessing approaches, reach up to 0.69% macro average F1 score on this bug classification problem. We demonstrate inter-project transferability of our approach. Further, we identify and discuss issues and limitations of ML classification approaches applied on textual bug reports. Our models can support researchers in data collection efforts, as for example bug benchmark creation. In future, such models could aid inexperienced developers in debugging tool selection, helping save time and resources.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"15 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259000562200042X/pdfft?md5=d85c4e5667d78881a25943827c972501&pid=1-s2.0-S259000562200042X-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259000562200042X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000562200042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

调试是一个耗时且昂贵的过程。开发者必须选择合适的工具、方法和方法,以便有效地复制、本地化和修复漏洞。这些选择是基于开发人员对给定错误报告的错误类型的评估。本文提出了一种基于机器学习(ML)的方法来预测给定文本错误报告的故障类型。我们从70多个项目中建立了一个数据集,用于培训和评估我们的方法。此外,我们进行了用户研究,为非专业人员在此任务中的表现建立基线。我们的模型,结合我们自定义的预处理方法,在这个bug分类问题上达到了0.69%的宏观平均F1分数。我们展示了我们的方法在项目间的可移植性。此外,我们确定并讨论了应用于文本错误报告的ML分类方法的问题和局限性。我们的模型可以支持研究人员进行数据收集工作,例如创建bug基准。将来,这样的模型可以帮助没有经验的开发人员选择调试工具,帮助节省时间和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using textual bug reports to predict the fault category of software bugs

Debugging is a time-consuming and expensive process. Developers have to select appropriate tools, methods and approaches in order to efficiently reproduce, localize and fix bugs. These choices are based on the developers’ assessment of the type of fault for a given bug report. This paper proposes a machine learning (ML) based approach that predicts the fault type for a given textual bug report. We built a dataset from 70+ projects for training and evaluation of our approach. Further, we performed a user study to establish a baseline for non-expert human performance on this task. Our models, incorporating our custom preprocessing approaches, reach up to 0.69% macro average F1 score on this bug classification problem. We demonstrate inter-project transferability of our approach. Further, we identify and discuss issues and limitations of ML classification approaches applied on textual bug reports. Our models can support researchers in data collection efforts, as for example bug benchmark creation. In future, such models could aid inexperienced developers in debugging tool selection, helping save time and resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Combining computational linguistics with sentence embedding to create a zero-shot NLIDB Development of automatic CNC machine with versatile applications in art, design, and engineering Dual-model approach for one-shot lithium-ion battery state of health sequence prediction Maximizing influence via link prediction in evolving networks Assessing generalizability of Deep Reinforcement Learning algorithms for Automated Vulnerability Assessment and Penetration Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1