中红外Er:ZBLAN光纤激光器的实验研究

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2020-09-30 DOI:10.4302/PLP.V12I3.989
Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki
{"title":"中红外Er:ZBLAN光纤激光器的实验研究","authors":"Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki","doi":"10.4302/PLP.V12I3.989","DOIUrl":null,"url":null,"abstract":"In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, \"Towards high-power mid-infrared emission from a fibre laser\", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, \"Advances on Photonic Crystal Fiber Sensors and Applications\", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, \"Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide\", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, \"High power, 100 W-class, thulium-doped all-fiber lasers\", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, \"Towards power scaling of 2.8  μm fiber lasers\", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, \"High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss\", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, \"10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm\", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., \"Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber\", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, \"Erbium 3 /spl mu/m fiber lasers\", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, \"Endcapping of high-power 3 µm fiber lasers\", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, \"Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm\", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, \"New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers\", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, \"Room-temperature fiber laser at 3.92  μm\", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, \"Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing\", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., \"Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ \", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., \"Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission\", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, \"Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass\", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, \"Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass\", J Lightwave Technol 1 (2020). CrossRef K. Anders, A. Jusza, P. Komorowski, P. Andrejuk, and R. Piramidowicz, \"Short wavelength up-converted emission studies in Er 3+ and Yb 3+ doped ZBLAN glasses\", J. Lumin. 201, 427 (2018). CrossRef P. Komorowski ,K. Anders ,U. Zdulska,R. Piramidowicz R. \"Erbium doped ZBLAN fiber laser operating in the visible - feasibility study\", Photonics Lett Pol 9, 85 (2017). CrossRef J. Swiderski, M. Michalska, and P. Grzes, \"Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier\", Applied Physics B 124, 152 (2018). CrossRef V. Fortin, M. Bernier, S. T. Bah, and R. Vallee, \"30  W fluoride glass all-fiber laser at 2.94  μm\", Opt. Lett. 40, 2882 (2015). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"73-75"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of mid-infrared Er:ZBLAN fiber laser\",\"authors\":\"Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki\",\"doi\":\"10.4302/PLP.V12I3.989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, \\\"Towards high-power mid-infrared emission from a fibre laser\\\", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, \\\"Advances on Photonic Crystal Fiber Sensors and Applications\\\", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, \\\"Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide\\\", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, \\\"High power, 100 W-class, thulium-doped all-fiber lasers\\\", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, \\\"Towards power scaling of 2.8  μm fiber lasers\\\", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, \\\"High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss\\\", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, \\\"10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm\\\", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., \\\"Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber\\\", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, \\\"Erbium 3 /spl mu/m fiber lasers\\\", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, \\\"Endcapping of high-power 3 µm fiber lasers\\\", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, \\\"Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm\\\", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, \\\"New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers\\\", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, \\\"Room-temperature fiber laser at 3.92  μm\\\", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, \\\"Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing\\\", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., \\\"Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ \\\", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., \\\"Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission\\\", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, \\\"Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass\\\", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, \\\"Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass\\\", J Lightwave Technol 1 (2020). CrossRef K. Anders, A. Jusza, P. Komorowski, P. Andrejuk, and R. Piramidowicz, \\\"Short wavelength up-converted emission studies in Er 3+ and Yb 3+ doped ZBLAN glasses\\\", J. Lumin. 201, 427 (2018). CrossRef P. Komorowski ,K. Anders ,U. Zdulska,R. Piramidowicz R. \\\"Erbium doped ZBLAN fiber laser operating in the visible - feasibility study\\\", Photonics Lett Pol 9, 85 (2017). CrossRef J. Swiderski, M. Michalska, and P. Grzes, \\\"Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier\\\", Applied Physics B 124, 152 (2018). CrossRef V. Fortin, M. Bernier, S. T. Bah, and R. Vallee, \\\"30  W fluoride glass all-fiber laser at 2.94  μm\\\", Opt. Lett. 40, 2882 (2015). CrossRef\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\"12 1\",\"pages\":\"73-75\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/PLP.V12I3.989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I3.989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,报道了二极管泵浦的高功率Er:ZBLAN激光器在2.8µm左右工作。激光器产生2W输出功率,相对于入射泵浦功率测量的斜率效率为24%。全文:PDF参考文献S.D.Jackson,“光纤激光器的高功率中红外发射”,《自然光子学》6423(2012)。CrossRef V.Portosi、D.Laneve、C.M.Falconi和F.Prudenzano,“光子晶体光纤传感器及其应用进展”,传感器19,(2019)。CrossRef M.C.Falconi、D.Laneve和F.Prudenzano,“中红外光纤激光器的进展:碲化物、氟化物和硫族化合物”,Fibers 5,23(2017)。CrossRef M.Michalska,P.Grześ,J.widerski,“高功率,100W级,掺铊全光纤激光器”,Phot。Lett。波兰,11209(2019)。CrossRef Y.O.Aydin、V.Fortin、R.Vallee和M.Bernier,“迈向2.8的功率缩放  μm光纤激光器”,Opt.Lett.434452(2018)。CrossRef S.Crawford、D.D.Hudson和S.D.Jackson,“用于测量光纤损耗的高功率宽调谐3-μm光纤激光”,IEEE光子杂志7,1(2015)。CrossRef V.Fortin、F.Jobin、m.Larose、m.Bernier和R.Vallee,“3.24时的10-W级单片掺镝光纤激光器  μm”,Opt.Lett.44491(2019)。CrossRef L.Sojka等人,“掺Dy3+氟锆酸盐光纤中红外激光作用的实验研究”,IEEE Photon.Technol.Lett.301083(2018)。CrossRef m.Pollnan和S.D.Jackson,“Erbium 3/splμ/m光纤激光器”,IEEE J.Sel.Top.in Quantum Electron.,7,30(2001)。CrossRef Y.O.Aydin,F.Maes,V.Fortin,S.T.Bah,R。Vallee和M.Bernier,“高功率3µM光纤激光器的端盖”,Opt。《快报》2720659(2019)。CrossRef C.A.Schafer,“2.8时用于高功率光纤激光器的氟化物光纤侧泵浦耦合器  μm”,等人,Opt.Lett.432340(2018)。CrossRef O.Henderson Sapir、J.Munch和D.J.Ottaway,“Er3+中的新能量传输上转换过程:ZBLAN中红外光纤激光器”,Opt.Express 246869(2016)。CrossRef F.Maes、V.Fortin、S.Poulain、m.Poulain,J.-Y.Carree、m.Bernier和R.Vallee,“3.92室温光纤激光器  μm”,Optica 5761(2018)。CrossRef R.I.Woodward,m.R.Majewski,D.D.Hudson和S.D.Jackson,“用于实时氨气传感的扫描波长中红外光纤激光器”,APL Photonics 4200801(2019)。CrossRef m.Kochanowicz等人,“与Er 3+/Tm 3+共掺杂的氟茚酸盐玻璃中的近红外和中红外发光和能量转移”,Opt.Mater.Express 94772(2019),CrossRef m。Kochanowicz等人,“掺杂Ho3+的氟茚酸盐玻璃对近红外和中红外发射的增敏作用”,光学材料101109707(2020)。CrossRef J.Wang,X.Zhu,M.Mollaee,J.Zong和N.Peyhambarian,“ZBLAN玻璃中Er3+到Ho3+和Dy3+的有效能量转移”,Opt。Express 285189(2020)。CrossRef M.C.Falconi、D.Laneve、V.Portosi、S.Taccheo和F.Prudenzano,“基于Tm:Er:Yb:Ho共掺杂锗酸盐玻璃的多波长光纤激光器的设计”,光波技术杂志1(2020)。CrossRef K.Anders,A.Jusza,P.Komorowski,P.Andrejuk和R.Piramidowicz,“掺Er3+和Yb3+ZBLAN玻璃中的短波长上转换发射研究”,J.Lumin。201227(2018)。CrossRef P.Komorowski,K。安德斯,U。Zdulska,R。Piramidowicz R.“掺铒ZBLAN光纤激光器在可见光中的可行性研究”,Photonics Lett Pol 9,85(2017)。CrossRef J.Swiderski、M.Michalska和P.Grzes,“在由2µM锁模光纤激光器和放大器直接泵浦的ZBLAN光纤中,以3.52W时间平均功率产生宽带和顶部平坦的中红外超连续谱”,应用物理学B 124152(2018)。CrossRef V.Fortin、M.Bernier、S.T.Bah和R.Vallee,“30  W氟化玻璃全光纤激光器2.94  μm”,Opt.Lett.402882(2015)。交叉参考
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of mid-infrared Er:ZBLAN fiber laser
In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, "Towards high-power mid-infrared emission from a fibre laser", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, "Advances on Photonic Crystal Fiber Sensors and Applications", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, "Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, "High power, 100 W-class, thulium-doped all-fiber lasers", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, "Towards power scaling of 2.8  μm fiber lasers", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, "High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, "10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., "Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, "Erbium 3 /spl mu/m fiber lasers", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, "Endcapping of high-power 3 µm fiber lasers", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, "Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, "New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, "Room-temperature fiber laser at 3.92  μm", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, "Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., "Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ ", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., "Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, "Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, "Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass", J Lightwave Technol 1 (2020). CrossRef K. Anders, A. Jusza, P. Komorowski, P. Andrejuk, and R. Piramidowicz, "Short wavelength up-converted emission studies in Er 3+ and Yb 3+ doped ZBLAN glasses", J. Lumin. 201, 427 (2018). CrossRef P. Komorowski ,K. Anders ,U. Zdulska,R. Piramidowicz R. "Erbium doped ZBLAN fiber laser operating in the visible - feasibility study", Photonics Lett Pol 9, 85 (2017). CrossRef J. Swiderski, M. Michalska, and P. Grzes, "Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier", Applied Physics B 124, 152 (2018). CrossRef V. Fortin, M. Bernier, S. T. Bah, and R. Vallee, "30  W fluoride glass all-fiber laser at 2.94  μm", Opt. Lett. 40, 2882 (2015). CrossRef
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1