A. Mostafavi, A. Mishra, M. Ulbricht, J. Denayer, S. Hosseini
{"title":"氧合器和膜氧合器:生物医学应用材料开发和工艺改进的出现、发展和进展","authors":"A. Mostafavi, A. Mishra, M. Ulbricht, J. Denayer, S. Hosseini","doi":"10.22079/JMSR.2021.521505.1431","DOIUrl":null,"url":null,"abstract":"Ever-increasing demands for high performance blood oxygenators have led to continuous advancements in this field. Despite the progresses made since their emergence, there still exist challenges that intimidate the reliability of membrane oxygenators. A promising approach for addressing these challenges and enhancing the overall process performance relates to the selection, development, and modification of materials with desirable characteristics. The main impetus for the present review is to bring forward important and yet less explored subjects by shedding light on the technological, design, and engineering aspects of oxygenators and the oxygenation process. Special attention is paid to membrane oxygenators and their essential characteristics such as gas transport, plasma leakage, and biocompatibility. Also, various practical configurations of membrane oxygenators are illustrated with their merits and limitations. From the materials perspective, a comprehensive range of polymeric materials with track records for applications as membrane oxygenators are surveyed and analyzed considering their physicochemical and biocompatibility properties in order to gain insights into the features of an optimal material. In addition to elaborations on the methods for fabrication of membrane oxygenators, various effective techniques that could be used for altering the microstructure and surface properties of the membranes are presented. Also, an in-depth overview is provided about the transport phenomena in membrane oxygenators aiming to provide a better understanding of the molecular and process aspects of the process. An overview of the state of the art is summarized along with points about the trends of future developments are provided at the end.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxygenation and Membrane Oxygenators: Emergence, Evolution and Progress in Material Development and Process Enhancement for Biomedical Applications\",\"authors\":\"A. Mostafavi, A. Mishra, M. Ulbricht, J. Denayer, S. Hosseini\",\"doi\":\"10.22079/JMSR.2021.521505.1431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ever-increasing demands for high performance blood oxygenators have led to continuous advancements in this field. Despite the progresses made since their emergence, there still exist challenges that intimidate the reliability of membrane oxygenators. A promising approach for addressing these challenges and enhancing the overall process performance relates to the selection, development, and modification of materials with desirable characteristics. The main impetus for the present review is to bring forward important and yet less explored subjects by shedding light on the technological, design, and engineering aspects of oxygenators and the oxygenation process. Special attention is paid to membrane oxygenators and their essential characteristics such as gas transport, plasma leakage, and biocompatibility. Also, various practical configurations of membrane oxygenators are illustrated with their merits and limitations. From the materials perspective, a comprehensive range of polymeric materials with track records for applications as membrane oxygenators are surveyed and analyzed considering their physicochemical and biocompatibility properties in order to gain insights into the features of an optimal material. In addition to elaborations on the methods for fabrication of membrane oxygenators, various effective techniques that could be used for altering the microstructure and surface properties of the membranes are presented. Also, an in-depth overview is provided about the transport phenomena in membrane oxygenators aiming to provide a better understanding of the molecular and process aspects of the process. An overview of the state of the art is summarized along with points about the trends of future developments are provided at the end.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2021.521505.1431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2021.521505.1431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Oxygenation and Membrane Oxygenators: Emergence, Evolution and Progress in Material Development and Process Enhancement for Biomedical Applications
Ever-increasing demands for high performance blood oxygenators have led to continuous advancements in this field. Despite the progresses made since their emergence, there still exist challenges that intimidate the reliability of membrane oxygenators. A promising approach for addressing these challenges and enhancing the overall process performance relates to the selection, development, and modification of materials with desirable characteristics. The main impetus for the present review is to bring forward important and yet less explored subjects by shedding light on the technological, design, and engineering aspects of oxygenators and the oxygenation process. Special attention is paid to membrane oxygenators and their essential characteristics such as gas transport, plasma leakage, and biocompatibility. Also, various practical configurations of membrane oxygenators are illustrated with their merits and limitations. From the materials perspective, a comprehensive range of polymeric materials with track records for applications as membrane oxygenators are surveyed and analyzed considering their physicochemical and biocompatibility properties in order to gain insights into the features of an optimal material. In addition to elaborations on the methods for fabrication of membrane oxygenators, various effective techniques that could be used for altering the microstructure and surface properties of the membranes are presented. Also, an in-depth overview is provided about the transport phenomena in membrane oxygenators aiming to provide a better understanding of the molecular and process aspects of the process. An overview of the state of the art is summarized along with points about the trends of future developments are provided at the end.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.