人工智能和机器学习对铁路运输关键软件安全性评估的贡献

H. Hadj-Mabrouk
{"title":"人工智能和机器学习对铁路运输关键软件安全性评估的贡献","authors":"H. Hadj-Mabrouk","doi":"10.3934/ELECTRENG.2019.1.33","DOIUrl":null,"url":null,"abstract":"As part of the process of certification and commissioning of a new guided or automated rail transport system, the domain experts and in particular the National Safety Authority are responsible for reviewing the safety of the system to ensure that the safety level of the new transport system is at least equivalent to the railway systems already in service and deemed safe. This critical task of evaluating safety essentially concerns all the safety files prepared by the manufacturer and in particular safety studies such as the Preliminary Hazard Analysis (PHA), the functional safety analysis (FSA), the analysis of failure modes, their effects and of their criticality (AFMEC) or Software Error Effect Analysis (SEEA). The study presented in this paper is part of the SEEA analysis. To respect the completeness and consistency of this safety analysis (SEEA), the experts carry out complementary analyses of safety. They are brought to imagine new scenarios of potential accidents to perfect the exhaustiveness of the safety studies. In this process, one of the difficulties then consists in finding the abnormal scenarios being able to lead to a particular potential accident. This is the fundamental point that motivated this work. To help experts in this complex process of evaluating safety studies, we agreed to use artificial intelligence techniques and in particular machine learning to systematize, streamline and strengthen conventional approaches to safety analysis and critical software certification. The approach which was adopted in order to design and implement an assistance tool for safety analysis involved the following two main activities: – Extracting, formalizing and storing hazardous situations to produce a library of standard cases which covers the entire problem. This process entailed the use of knowledge acquisition techniques; – Exploiting the stored historical knowledge in order to develop safety analysis know-how which can assist experts to judge the thoroughness of the manufacturer’s suggested safety analysis. This second activity involves the use of machine learning techniques in particular the use of case-based reasoning (CBR).","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Contribution of artificial intelligence and machine learning to the assessment of the safety of critical software used in railway transport\",\"authors\":\"H. Hadj-Mabrouk\",\"doi\":\"10.3934/ELECTRENG.2019.1.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the process of certification and commissioning of a new guided or automated rail transport system, the domain experts and in particular the National Safety Authority are responsible for reviewing the safety of the system to ensure that the safety level of the new transport system is at least equivalent to the railway systems already in service and deemed safe. This critical task of evaluating safety essentially concerns all the safety files prepared by the manufacturer and in particular safety studies such as the Preliminary Hazard Analysis (PHA), the functional safety analysis (FSA), the analysis of failure modes, their effects and of their criticality (AFMEC) or Software Error Effect Analysis (SEEA). The study presented in this paper is part of the SEEA analysis. To respect the completeness and consistency of this safety analysis (SEEA), the experts carry out complementary analyses of safety. They are brought to imagine new scenarios of potential accidents to perfect the exhaustiveness of the safety studies. In this process, one of the difficulties then consists in finding the abnormal scenarios being able to lead to a particular potential accident. This is the fundamental point that motivated this work. To help experts in this complex process of evaluating safety studies, we agreed to use artificial intelligence techniques and in particular machine learning to systematize, streamline and strengthen conventional approaches to safety analysis and critical software certification. The approach which was adopted in order to design and implement an assistance tool for safety analysis involved the following two main activities: – Extracting, formalizing and storing hazardous situations to produce a library of standard cases which covers the entire problem. This process entailed the use of knowledge acquisition techniques; – Exploiting the stored historical knowledge in order to develop safety analysis know-how which can assist experts to judge the thoroughness of the manufacturer’s suggested safety analysis. This second activity involves the use of machine learning techniques in particular the use of case-based reasoning (CBR).\",\"PeriodicalId\":36329,\"journal\":{\"name\":\"AIMS Electronics and Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Electronics and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ELECTRENG.2019.1.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ELECTRENG.2019.1.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8

摘要

作为新的引导或自动化铁路运输系统认证和调试过程的一部分,领域专家,特别是国家安全局负责审查该系统的安全性,以确保新运输系统的安全水平至少与已经投入使用并被视为安全的铁路系统相当。这项评估安全性的关键任务主要涉及制造商编制的所有安全文件,尤其是安全研究,如初步危险分析(PHA)、功能安全分析(FSA)、故障模式、其影响及其关键性分析(AFMEC)或软件错误影响分析(SEEA)。本文提出的研究是环经核算体系分析的一部分。为了尊重本安全分析(SEEA)的完整性和一致性,专家们对安全进行了补充分析。他们被要求想象潜在事故的新场景,以完善安全研究的详尽性。在这个过程中,困难之一在于找到能够导致特定潜在事故的异常情况。这是推动这项工作的根本点。为了帮助专家评估这一复杂的安全研究过程,我们同意使用人工智能技术,特别是机器学习,使安全分析和关键软件认证的传统方法系统化、简化和加强。为设计和实施安全分析辅助工具而采用的方法涉及以下两项主要活动:提取、正式化和存储危险情况,以生成涵盖整个问题的标准案例库。这一过程需要使用知识获取技术利用存储的历史知识,开发安全分析技术,帮助专家判断制造商建议的安全分析的彻底性。第二项活动涉及机器学习技术的使用,特别是基于案例的推理(CBR)的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of artificial intelligence and machine learning to the assessment of the safety of critical software used in railway transport
As part of the process of certification and commissioning of a new guided or automated rail transport system, the domain experts and in particular the National Safety Authority are responsible for reviewing the safety of the system to ensure that the safety level of the new transport system is at least equivalent to the railway systems already in service and deemed safe. This critical task of evaluating safety essentially concerns all the safety files prepared by the manufacturer and in particular safety studies such as the Preliminary Hazard Analysis (PHA), the functional safety analysis (FSA), the analysis of failure modes, their effects and of their criticality (AFMEC) or Software Error Effect Analysis (SEEA). The study presented in this paper is part of the SEEA analysis. To respect the completeness and consistency of this safety analysis (SEEA), the experts carry out complementary analyses of safety. They are brought to imagine new scenarios of potential accidents to perfect the exhaustiveness of the safety studies. In this process, one of the difficulties then consists in finding the abnormal scenarios being able to lead to a particular potential accident. This is the fundamental point that motivated this work. To help experts in this complex process of evaluating safety studies, we agreed to use artificial intelligence techniques and in particular machine learning to systematize, streamline and strengthen conventional approaches to safety analysis and critical software certification. The approach which was adopted in order to design and implement an assistance tool for safety analysis involved the following two main activities: – Extracting, formalizing and storing hazardous situations to produce a library of standard cases which covers the entire problem. This process entailed the use of knowledge acquisition techniques; – Exploiting the stored historical knowledge in order to develop safety analysis know-how which can assist experts to judge the thoroughness of the manufacturer’s suggested safety analysis. This second activity involves the use of machine learning techniques in particular the use of case-based reasoning (CBR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊最新文献
Miniature glass-metal coaxial waveguide reactors for microwave-assisted liquid heating Adaptive PID sliding mode control based on new Quasi-sliding mode and radial basis function neural network for Omni-directional mobile robot A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems Adaptive online auto-tuning using particle swarm optimized PI controller with time-variant approach for high accuracy and speed in dual active bridge converter Analysis of a low-profile, dual band patch antenna for wireless applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1