{"title":"基于体积加权快速选择算法的相场裂缝自适应方法","authors":"Kai Xie, Ruijie Zhang, Zhongxin Li, Zhilin Wu","doi":"10.1007/s10704-023-00718-7","DOIUrl":null,"url":null,"abstract":"<div><p>The phase-field fracture method (PFM) requires an extremely fine mesh to accurately capture the crack topology, which is computationally expensive. In this work, a new adaptive mesh refinement method is proposed for phase-field fracture. Based on the phase field increment, a volume weighted Quickselect algorithm is used to determine the coarsen region and the refined region. The speed of the crack propagation is predicted to control the size of the refined region, which reduces unnecessary degrees of freedom. Several benchmark numerical examples are simulated and the results demonstrate the efficiency and accuracy of the proposed method. In the numerical examples, the computational time using this method is reduced by about 90% compared with the standard PFM.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"242 2","pages":"247 - 263"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm\",\"authors\":\"Kai Xie, Ruijie Zhang, Zhongxin Li, Zhilin Wu\",\"doi\":\"10.1007/s10704-023-00718-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phase-field fracture method (PFM) requires an extremely fine mesh to accurately capture the crack topology, which is computationally expensive. In this work, a new adaptive mesh refinement method is proposed for phase-field fracture. Based on the phase field increment, a volume weighted Quickselect algorithm is used to determine the coarsen region and the refined region. The speed of the crack propagation is predicted to control the size of the refined region, which reduces unnecessary degrees of freedom. Several benchmark numerical examples are simulated and the results demonstrate the efficiency and accuracy of the proposed method. In the numerical examples, the computational time using this method is reduced by about 90% compared with the standard PFM.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"242 2\",\"pages\":\"247 - 263\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00718-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00718-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm
The phase-field fracture method (PFM) requires an extremely fine mesh to accurately capture the crack topology, which is computationally expensive. In this work, a new adaptive mesh refinement method is proposed for phase-field fracture. Based on the phase field increment, a volume weighted Quickselect algorithm is used to determine the coarsen region and the refined region. The speed of the crack propagation is predicted to control the size of the refined region, which reduces unnecessary degrees of freedom. Several benchmark numerical examples are simulated and the results demonstrate the efficiency and accuracy of the proposed method. In the numerical examples, the computational time using this method is reduced by about 90% compared with the standard PFM.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.