{"title":"序列三维拉伸弯曲的运动学:回弹分析模型","authors":"T. Ha, T. Welo, G. Ringen, Jyhwen Wang","doi":"10.1115/1.4057027","DOIUrl":null,"url":null,"abstract":"In profile bending, the geometrical defect that reduces dimensional quality is mainly due to springback. While predicting dimensions after bending is important for quality control, many factors during bending cause difficulty in springback prediction. Furthermore, complex three-dimensional (3D) shapes in bending can make springback prediction significantly more difficult. This work presents a springback prediction method for varying curvature 3D profile/tube bending. An advanced 5-axis bending machine, with rotary semi-dies opposing each other, has been developed. As the geometry of the bend die constrains the workpiece in the bending region, a model for 3D stretch bending is established from the rotational motion of the bend die. The discretized curvature of a bent profile geometry is described by using the Frenet-Serret frames, and a model for springback prediction is further developed based on the kinematics analysis of the bending process. This generalized analytical approach and numerical simulation are applied to evaluate springback in both 2D and 3D stretch bending of a thin-walled aluminum profile with a rectangular cross-section. The analytical and numerical results for springback prediction are validated with experiments, showing good agreement. The developed model is able to evaluate 3D springback of a profile with arbitrary cross-section efficiently for product design and development.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On kinematics in sequential three-dimensional (3D) stretch bending: Analytical springback model\",\"authors\":\"T. Ha, T. Welo, G. Ringen, Jyhwen Wang\",\"doi\":\"10.1115/1.4057027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In profile bending, the geometrical defect that reduces dimensional quality is mainly due to springback. While predicting dimensions after bending is important for quality control, many factors during bending cause difficulty in springback prediction. Furthermore, complex three-dimensional (3D) shapes in bending can make springback prediction significantly more difficult. This work presents a springback prediction method for varying curvature 3D profile/tube bending. An advanced 5-axis bending machine, with rotary semi-dies opposing each other, has been developed. As the geometry of the bend die constrains the workpiece in the bending region, a model for 3D stretch bending is established from the rotational motion of the bend die. The discretized curvature of a bent profile geometry is described by using the Frenet-Serret frames, and a model for springback prediction is further developed based on the kinematics analysis of the bending process. This generalized analytical approach and numerical simulation are applied to evaluate springback in both 2D and 3D stretch bending of a thin-walled aluminum profile with a rectangular cross-section. The analytical and numerical results for springback prediction are validated with experiments, showing good agreement. The developed model is able to evaluate 3D springback of a profile with arbitrary cross-section efficiently for product design and development.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4057027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4057027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
On kinematics in sequential three-dimensional (3D) stretch bending: Analytical springback model
In profile bending, the geometrical defect that reduces dimensional quality is mainly due to springback. While predicting dimensions after bending is important for quality control, many factors during bending cause difficulty in springback prediction. Furthermore, complex three-dimensional (3D) shapes in bending can make springback prediction significantly more difficult. This work presents a springback prediction method for varying curvature 3D profile/tube bending. An advanced 5-axis bending machine, with rotary semi-dies opposing each other, has been developed. As the geometry of the bend die constrains the workpiece in the bending region, a model for 3D stretch bending is established from the rotational motion of the bend die. The discretized curvature of a bent profile geometry is described by using the Frenet-Serret frames, and a model for springback prediction is further developed based on the kinematics analysis of the bending process. This generalized analytical approach and numerical simulation are applied to evaluate springback in both 2D and 3D stretch bending of a thin-walled aluminum profile with a rectangular cross-section. The analytical and numerical results for springback prediction are validated with experiments, showing good agreement. The developed model is able to evaluate 3D springback of a profile with arbitrary cross-section efficiently for product design and development.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining