基于VGG16结构的卷积神经网络人脸表情识别

L. Latumakulita, Sandy Laurentius Lumintang, Deiby Tineke Salakia, S. R. Sentinuwo, A. Sambul, N. Islam
{"title":"基于VGG16结构的卷积神经网络人脸表情识别","authors":"L. Latumakulita, Sandy Laurentius Lumintang, Deiby Tineke Salakia, S. R. Sentinuwo, A. Sambul, N. Islam","doi":"10.17977/um018v5i12022p78-86","DOIUrl":null,"url":null,"abstract":"The human facial expression identification system is essential in developing human interaction and technology. The development of Artificial Intelligence for monitoring human emotions can be helpful in the workplace. Commonly, there are six basic human expressions, namely anger, disgust, fear, happiness, sadness, and surprise, that the system can identify. This study aims to create a facial expression identification system based on basic human expressions using the Convolutional Neural Network (CNN) with a 16-layer VGG architecture. Two thousand one hundred thirty-seven facial expression images were selected from the FER2013, JAFFE, and MUG datasets. By implementing image augmentation and setting up the network parameters to Epoch of 100, the learning rate of 0,0001, and applying in the 5Fold Cross Validation, this system shows performance with an average accuracy of 84%. Results show that the model is suitable for identifying the basic facial expressions of humans.","PeriodicalId":52868,"journal":{"name":"Knowledge Engineering and Data Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Facial Expressions Identification using Convolutional Neural Network with VGG16 Architecture\",\"authors\":\"L. Latumakulita, Sandy Laurentius Lumintang, Deiby Tineke Salakia, S. R. Sentinuwo, A. Sambul, N. Islam\",\"doi\":\"10.17977/um018v5i12022p78-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human facial expression identification system is essential in developing human interaction and technology. The development of Artificial Intelligence for monitoring human emotions can be helpful in the workplace. Commonly, there are six basic human expressions, namely anger, disgust, fear, happiness, sadness, and surprise, that the system can identify. This study aims to create a facial expression identification system based on basic human expressions using the Convolutional Neural Network (CNN) with a 16-layer VGG architecture. Two thousand one hundred thirty-seven facial expression images were selected from the FER2013, JAFFE, and MUG datasets. By implementing image augmentation and setting up the network parameters to Epoch of 100, the learning rate of 0,0001, and applying in the 5Fold Cross Validation, this system shows performance with an average accuracy of 84%. Results show that the model is suitable for identifying the basic facial expressions of humans.\",\"PeriodicalId\":52868,\"journal\":{\"name\":\"Knowledge Engineering and Data Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge Engineering and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17977/um018v5i12022p78-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Engineering and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17977/um018v5i12022p78-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸表情识别系统对人类互动和技术的发展至关重要。用于监测人类情绪的人工智能的发展在工作场所可能会有所帮助。通常,系统可以识别出六种基本的人类表达方式,即愤怒、厌恶、恐惧、快乐、悲伤和惊讶。本研究旨在使用16层VGG架构的卷积神经网络(CNN)创建一个基于人类基本表情的面部表情识别系统。从FER2013、JAFFE和MUG数据集中选择了二千一百三十七张面部表情图像。通过实现图像增强,将网络参数设置为Epoch为100,学习率为00001,并应用于5折叠交叉验证,该系统显示出平均准确率为84%的性能。结果表明,该模型适用于识别人类的基本面部表情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Facial Expressions Identification using Convolutional Neural Network with VGG16 Architecture
The human facial expression identification system is essential in developing human interaction and technology. The development of Artificial Intelligence for monitoring human emotions can be helpful in the workplace. Commonly, there are six basic human expressions, namely anger, disgust, fear, happiness, sadness, and surprise, that the system can identify. This study aims to create a facial expression identification system based on basic human expressions using the Convolutional Neural Network (CNN) with a 16-layer VGG architecture. Two thousand one hundred thirty-seven facial expression images were selected from the FER2013, JAFFE, and MUG datasets. By implementing image augmentation and setting up the network parameters to Epoch of 100, the learning rate of 0,0001, and applying in the 5Fold Cross Validation, this system shows performance with an average accuracy of 84%. Results show that the model is suitable for identifying the basic facial expressions of humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
4
审稿时长
8 weeks
期刊最新文献
Optimizing Random Forest Algorithm to Classify Player's Memorisation via In-game Data Long-Term Traffic Prediction Based on Stacked GCN Model Round-Robin Algorithm in Load Balancing for National Data Centers K-Means Clustering and Multilayer Perceptron for Categorizing Student Business Groups Maximum Marginal Relevance and Vector Space Model for Summarizing Students' Final Project Abstracts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1