{"title":"关于稠密图中生成结构的充分条件","authors":"R. Lang, Nicolás Sanhueza-Matamala","doi":"10.1112/plms.12552","DOIUrl":null,"url":null,"abstract":"We study structural conditions in dense graphs that guarantee the existence of vertex‐spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. A simple consequence of the Robust Expander Theorem of Kühn, Osthus and Treglown tells us that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Our main result generalises this phenomenon to powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This answers a question of Ebsen, Maesaka, Reiher, Schacht and Schülke and solves the embedding problem that underlies multiple lines of research on sufficient conditions for spanning structures in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore‐type degree conditions, Pósa‐type degree conditions, deficiency‐type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On sufficient conditions for spanning structures in dense graphs\",\"authors\":\"R. Lang, Nicolás Sanhueza-Matamala\",\"doi\":\"10.1112/plms.12552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study structural conditions in dense graphs that guarantee the existence of vertex‐spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. A simple consequence of the Robust Expander Theorem of Kühn, Osthus and Treglown tells us that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Our main result generalises this phenomenon to powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This answers a question of Ebsen, Maesaka, Reiher, Schacht and Schülke and solves the embedding problem that underlies multiple lines of research on sufficient conditions for spanning structures in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore‐type degree conditions, Pósa‐type degree conditions, deficiency‐type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12552\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12552","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On sufficient conditions for spanning structures in dense graphs
We study structural conditions in dense graphs that guarantee the existence of vertex‐spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. A simple consequence of the Robust Expander Theorem of Kühn, Osthus and Treglown tells us that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Our main result generalises this phenomenon to powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This answers a question of Ebsen, Maesaka, Reiher, Schacht and Schülke and solves the embedding problem that underlies multiple lines of research on sufficient conditions for spanning structures in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore‐type degree conditions, Pósa‐type degree conditions, deficiency‐type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.