Mass Sportrometry:质谱在运动和锻炼科学中的应用年度回顾

IF 3 Q2 CHEMISTRY, ANALYTICAL Analytical science advances Pub Date : 2023-03-31 DOI:10.1002/ansa.202300003
Marilyn LY Ong, Christopher G Green, Samantha N Rowland, Liam M Heaney
{"title":"Mass Sportrometry:质谱在运动和锻炼科学中的应用年度回顾","authors":"Marilyn LY Ong,&nbsp;Christopher G Green,&nbsp;Samantha N Rowland,&nbsp;Liam M Heaney","doi":"10.1002/ansa.202300003","DOIUrl":null,"url":null,"abstract":"<p>Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of <i>‘omics’</i> to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.202300003","citationCount":"0","resultStr":"{\"title\":\"Mass Sportrometry: An annual look back at applications of mass spectrometry in sport and exercise science\",\"authors\":\"Marilyn LY Ong,&nbsp;Christopher G Green,&nbsp;Samantha N Rowland,&nbsp;Liam M Heaney\",\"doi\":\"10.1002/ansa.202300003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of <i>‘omics’</i> to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.</p>\",\"PeriodicalId\":93411,\"journal\":{\"name\":\"Analytical science advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.202300003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202300003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202300003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

运动与运动科学(SES)的研究依赖于对生物标志物测量的可靠分析,以协助解释生理结果。质谱(MS)是一种分析方法,能够对一系列生物分子进行高度敏感、特异、精确和准确的分析,其中许多是SES感兴趣的生物分子,包括但不限于内源性代谢物、外源性给药化合物(如补充剂)、矿物质离子和循环/组织蛋白。本年度综述总结了MS在2022年出版或正在出版的手稿中调查与体育或锻炼相关方面的研究中的应用。总共包括93份出版物,并根据其方法进行分类,包括目标分析,代谢组学,脂质组学,蛋白质组学和同位素比率/元素质谱。通过相关文章的选择,讨论了质谱技术提供的有利分析机会。此外,讨论了MS在SES中未来的考虑,包括改进分析特征和验证数据报告的需要,并建议在适当的情况下用MS-based方法取代选定的当前方法。这篇综述指出,一种有针对性的、主要是定量的方法是SES中最常用的质谱方法,尽管人们对使用“组学”进行假设生成研究也有浓厚的兴趣。尽管如此,MS目前在SES中并不常见,但它的使用应该不断扩大,并可能改进,分析选择应该被不断考虑,以利用分析化学在运动/运动研究中的好处。总的来说,看到MS在SES中的应用逐渐增加是令人兴奋的,预计SES中基于MS的检测的数量和质量将随着时间的推移而增加,有可能在2023年进一步建立该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mass Sportrometry: An annual look back at applications of mass spectrometry in sport and exercise science

Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of ‘omics’ to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Emerging Scientists in Analytical Sciences: Zhuoheng Zhou Sensitive and Cost-Effective Tools in the Detection of Ovarian Cancer Biomarkers Preprocessing of spectroscopic data to highlight spectral features of materials Bioactive Potential of the Sulfated Exopolysaccharides From the Brown Microalga Halamphora sp.: Antioxidant, Antimicrobial, and Antiapoptotic Profiles Effect of orange fruit peel extract concentration on the synthesis of zinc oxide nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1