{"title":"芝麻壳中纤维素多糖在不同温度焙烧过程中的结构变化","authors":"Yongzhi Yao, Wen-Yue Wang, Li-Yan Chen, Hua‐Min Liu, Ruiying Yan, Shan Li, Xue‐de Wang","doi":"10.15586/QAS.V13I2.876","DOIUrl":null,"url":null,"abstract":"This article reports a study of the degradation of roasted sesame hulls cellulosic polysaccharides contribution to the Maillard and caramelization reaction. In the present study, cellulosic polysaccharides were extracted from sesame hulls before and after roasting at various temperatures (160, 180, 200, and 220 °C). The structural variations of the cellulosic polysaccharides were elucidated by using the techniques: scanning electron microscope (SEM), high-performance anion-exchange chromatography, Fourier transform (FT-IR) spectrometer, carbon-13 nuclear magnetic resonance (CP/MAS 13C-NMR), and thermal gravimetric analysis. The pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) characterized and verified the chemical composition obtained from the polysaccharide degradation during roasting. The sugar analysis results showed that galacturonic acid, xylose, and rhamnose were more easily degraded than arabinose, galactose, glucose, and mannose. The morphology of the cellulosic polysaccharides shows irregular dispersed globular fragments after roasting by SEM observation. FT-IR and CP/MAS 13C-NMR spectra indicated the crystalline structure and linkages of the cellulose did not break down in comparison to amorphous cellulose that partly degraded. Abundant acetic acid and 3-furaldehyde were among the polysaccharide degradation products identified by Py-GC/MS. These chemical compounds were likely the significant contributors to caramelization and the Maillard reaction in sesame seed roasting.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"13-24"},"PeriodicalIF":4.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structural changes of cellulosic polysaccharides in sesame hull during roasting at various temperatures\",\"authors\":\"Yongzhi Yao, Wen-Yue Wang, Li-Yan Chen, Hua‐Min Liu, Ruiying Yan, Shan Li, Xue‐de Wang\",\"doi\":\"10.15586/QAS.V13I2.876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reports a study of the degradation of roasted sesame hulls cellulosic polysaccharides contribution to the Maillard and caramelization reaction. In the present study, cellulosic polysaccharides were extracted from sesame hulls before and after roasting at various temperatures (160, 180, 200, and 220 °C). The structural variations of the cellulosic polysaccharides were elucidated by using the techniques: scanning electron microscope (SEM), high-performance anion-exchange chromatography, Fourier transform (FT-IR) spectrometer, carbon-13 nuclear magnetic resonance (CP/MAS 13C-NMR), and thermal gravimetric analysis. The pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) characterized and verified the chemical composition obtained from the polysaccharide degradation during roasting. The sugar analysis results showed that galacturonic acid, xylose, and rhamnose were more easily degraded than arabinose, galactose, glucose, and mannose. The morphology of the cellulosic polysaccharides shows irregular dispersed globular fragments after roasting by SEM observation. FT-IR and CP/MAS 13C-NMR spectra indicated the crystalline structure and linkages of the cellulose did not break down in comparison to amorphous cellulose that partly degraded. Abundant acetic acid and 3-furaldehyde were among the polysaccharide degradation products identified by Py-GC/MS. These chemical compounds were likely the significant contributors to caramelization and the Maillard reaction in sesame seed roasting.\",\"PeriodicalId\":20868,\"journal\":{\"name\":\"Quality Assurance and Safety of Crops & Foods\",\"volume\":\"13 1\",\"pages\":\"13-24\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Assurance and Safety of Crops & Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/QAS.V13I2.876\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/QAS.V13I2.876","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Structural changes of cellulosic polysaccharides in sesame hull during roasting at various temperatures
This article reports a study of the degradation of roasted sesame hulls cellulosic polysaccharides contribution to the Maillard and caramelization reaction. In the present study, cellulosic polysaccharides were extracted from sesame hulls before and after roasting at various temperatures (160, 180, 200, and 220 °C). The structural variations of the cellulosic polysaccharides were elucidated by using the techniques: scanning electron microscope (SEM), high-performance anion-exchange chromatography, Fourier transform (FT-IR) spectrometer, carbon-13 nuclear magnetic resonance (CP/MAS 13C-NMR), and thermal gravimetric analysis. The pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) characterized and verified the chemical composition obtained from the polysaccharide degradation during roasting. The sugar analysis results showed that galacturonic acid, xylose, and rhamnose were more easily degraded than arabinose, galactose, glucose, and mannose. The morphology of the cellulosic polysaccharides shows irregular dispersed globular fragments after roasting by SEM observation. FT-IR and CP/MAS 13C-NMR spectra indicated the crystalline structure and linkages of the cellulose did not break down in comparison to amorphous cellulose that partly degraded. Abundant acetic acid and 3-furaldehyde were among the polysaccharide degradation products identified by Py-GC/MS. These chemical compounds were likely the significant contributors to caramelization and the Maillard reaction in sesame seed roasting.
期刊介绍:
''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered.
''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.