新西兰土壤-结构相互作用模型的实践现状

IF 0.8 Q4 ENGINEERING, GEOLOGICAL Bulletin of the New Zealand Society for Earthquake Engineering Pub Date : 2023-09-01 DOI:10.5459/bnzsee.1609
T. Hnat, Christopher McGann, L. Wotherspoon
{"title":"新西兰土壤-结构相互作用模型的实践现状","authors":"T. Hnat, Christopher McGann, L. Wotherspoon","doi":"10.5459/bnzsee.1609","DOIUrl":null,"url":null,"abstract":"The current state of practice in soil-structure interaction (SSI) modelling in New Zealand was investigated through an industry-wide questionnaire. This used a mixed methods, sequential explanatory research design involving the collection of quantitative and qualitative questionnaire data, as well as follow-up focus groups. Several statistically significant relationships were observed for SSI modelling approaches between different engineering fields, company sizes, and years of experience.\nThe key findings from this study suggest that there is no consensus on the best SSI analysis methods, modelling strategies, or guidelines to be used. Overall, fixed base analysis remains the most popular method across all company sizes and number of years of industry experience. Engineers from large companies reported higher consideration for SSI modelling and use of performance-based design for design projects, which perhaps reflects the scale and complexity of projects carried out in those companies. However when SSI is considered, analyses are typically limited to nonlinear vertical springs under the foundation as part of a dynamic analysis. Use of SSI for buildings is typically limited to seismic assessments and complex or otherwise high importance structures. However, bridge engineers routinely used pushover analyses with linear and nonlinear springs and dynamic analyses with nonlinear springs, in contrast with the rest of the industry.\nThere is further room to improve on the quality of communication and interaction between structural and geotechnical engineers. A lack of specific guidance on when SSI should be considered was reported, alongside broader training issues to ensure that structural and geotechnical engineers fundamentally understand the requirements and input/output needs of each role.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The state of practice in soil-structure interaction modelling in New Zealand\",\"authors\":\"T. Hnat, Christopher McGann, L. Wotherspoon\",\"doi\":\"10.5459/bnzsee.1609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current state of practice in soil-structure interaction (SSI) modelling in New Zealand was investigated through an industry-wide questionnaire. This used a mixed methods, sequential explanatory research design involving the collection of quantitative and qualitative questionnaire data, as well as follow-up focus groups. Several statistically significant relationships were observed for SSI modelling approaches between different engineering fields, company sizes, and years of experience.\\nThe key findings from this study suggest that there is no consensus on the best SSI analysis methods, modelling strategies, or guidelines to be used. Overall, fixed base analysis remains the most popular method across all company sizes and number of years of industry experience. Engineers from large companies reported higher consideration for SSI modelling and use of performance-based design for design projects, which perhaps reflects the scale and complexity of projects carried out in those companies. However when SSI is considered, analyses are typically limited to nonlinear vertical springs under the foundation as part of a dynamic analysis. Use of SSI for buildings is typically limited to seismic assessments and complex or otherwise high importance structures. However, bridge engineers routinely used pushover analyses with linear and nonlinear springs and dynamic analyses with nonlinear springs, in contrast with the rest of the industry.\\nThere is further room to improve on the quality of communication and interaction between structural and geotechnical engineers. A lack of specific guidance on when SSI should be considered was reported, alongside broader training issues to ensure that structural and geotechnical engineers fundamentally understand the requirements and input/output needs of each role.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.1609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.1609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过一份全行业问卷调查了新西兰土壤-结构相互作用(SSI)建模的现状。这采用了混合方法,顺序解释性研究设计,包括收集定量和定性问卷数据,以及后续重点小组。SSI建模方法在不同的工程领域、公司规模和多年经验之间存在一些统计上显著的关系。这项研究的关键发现表明,对于要使用的最佳SSI分析方法、建模策略或指南,还没有达成共识。总的来说,固定基数分析仍然是所有公司规模和多年行业经验中最受欢迎的方法。来自大公司的工程师报告说,他们更重视SSI建模,并在设计项目中使用基于性能的设计,这可能反映了这些公司实施项目的规模和复杂性。然而,当考虑SSI时,作为动力分析的一部分,分析通常仅限于基础下的非线性垂直弹簧。建筑物SSI的使用通常仅限于地震评估和复杂或其他高度重要的结构。然而,与行业其他部门相比,桥梁工程师通常使用线性和非线性弹簧的pushover分析以及非线性弹簧的动力学分析。在结构工程师和岩土工程师之间的沟通和互动质量方面还有进一步的改进空间。据报道,除了更广泛的培训问题外,还缺乏关于何时应考虑SSI的具体指导,以确保结构和岩土工程师从根本上了解每个角色的要求和输入/输出需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The state of practice in soil-structure interaction modelling in New Zealand
The current state of practice in soil-structure interaction (SSI) modelling in New Zealand was investigated through an industry-wide questionnaire. This used a mixed methods, sequential explanatory research design involving the collection of quantitative and qualitative questionnaire data, as well as follow-up focus groups. Several statistically significant relationships were observed for SSI modelling approaches between different engineering fields, company sizes, and years of experience. The key findings from this study suggest that there is no consensus on the best SSI analysis methods, modelling strategies, or guidelines to be used. Overall, fixed base analysis remains the most popular method across all company sizes and number of years of industry experience. Engineers from large companies reported higher consideration for SSI modelling and use of performance-based design for design projects, which perhaps reflects the scale and complexity of projects carried out in those companies. However when SSI is considered, analyses are typically limited to nonlinear vertical springs under the foundation as part of a dynamic analysis. Use of SSI for buildings is typically limited to seismic assessments and complex or otherwise high importance structures. However, bridge engineers routinely used pushover analyses with linear and nonlinear springs and dynamic analyses with nonlinear springs, in contrast with the rest of the industry. There is further room to improve on the quality of communication and interaction between structural and geotechnical engineers. A lack of specific guidance on when SSI should be considered was reported, alongside broader training issues to ensure that structural and geotechnical engineers fundamentally understand the requirements and input/output needs of each role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations Seismic protection of artefacts with adhesives and base-isolation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1