{"title":"不同纳米颗粒在换热器应用中的可持续性评估:一种基于直觉模糊组合距离的评估方法","authors":"Sunil Kumar, Sandeep Kumar Gautam, Ankush Kumar, Rajesh Maithan, Anil Kumar","doi":"10.32933/actainnovations.40.4","DOIUrl":null,"url":null,"abstract":"The rate at which the conventional energy sources are depleting is a matter of concern, and there have been major attention on this to make the thermal systems environment friendly, efficient, economic, sustainable, technically reliable. Sustainability of five different types of nanoparticles (Ceramic, carbon based, metal based, polymeric, and lipid based) from the perspective of four aspects involving cost, efficiency, technicality and environmental effect, in heat exchangers has been assessed. The analysis is carried out using the intuitionistic fuzzy combative distance based assessment (IFCODAS) method. In order to measure the sustainability of nanoparticles, a set of eleven evaluating criteria have been accredited on the basis of expert opinions and focus group meetings. By amalgamating the intuitionistic fuzzy set (IFS) theory as well as the use of distance-based assessment (CODAS) method, the IFCODAS method has permitted the decision-makers to rate the alternative five nanoparticles pertaining to each criterion. On the basis of the results obtained from IFCODAS method, it is observed that the carbon based nanoparticles have an immense potential to provide significantly reliable and sustainable thermal system than other nanoparticles.","PeriodicalId":32240,"journal":{"name":"Acta Innovations","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sustainability assessment of different nanoparticle for heat exchanger applications: an intuitionistic fuzzy combinative distance-based assessment method\",\"authors\":\"Sunil Kumar, Sandeep Kumar Gautam, Ankush Kumar, Rajesh Maithan, Anil Kumar\",\"doi\":\"10.32933/actainnovations.40.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rate at which the conventional energy sources are depleting is a matter of concern, and there have been major attention on this to make the thermal systems environment friendly, efficient, economic, sustainable, technically reliable. Sustainability of five different types of nanoparticles (Ceramic, carbon based, metal based, polymeric, and lipid based) from the perspective of four aspects involving cost, efficiency, technicality and environmental effect, in heat exchangers has been assessed. The analysis is carried out using the intuitionistic fuzzy combative distance based assessment (IFCODAS) method. In order to measure the sustainability of nanoparticles, a set of eleven evaluating criteria have been accredited on the basis of expert opinions and focus group meetings. By amalgamating the intuitionistic fuzzy set (IFS) theory as well as the use of distance-based assessment (CODAS) method, the IFCODAS method has permitted the decision-makers to rate the alternative five nanoparticles pertaining to each criterion. On the basis of the results obtained from IFCODAS method, it is observed that the carbon based nanoparticles have an immense potential to provide significantly reliable and sustainable thermal system than other nanoparticles.\",\"PeriodicalId\":32240,\"journal\":{\"name\":\"Acta Innovations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32933/actainnovations.40.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32933/actainnovations.40.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Sustainability assessment of different nanoparticle for heat exchanger applications: an intuitionistic fuzzy combinative distance-based assessment method
The rate at which the conventional energy sources are depleting is a matter of concern, and there have been major attention on this to make the thermal systems environment friendly, efficient, economic, sustainable, technically reliable. Sustainability of five different types of nanoparticles (Ceramic, carbon based, metal based, polymeric, and lipid based) from the perspective of four aspects involving cost, efficiency, technicality and environmental effect, in heat exchangers has been assessed. The analysis is carried out using the intuitionistic fuzzy combative distance based assessment (IFCODAS) method. In order to measure the sustainability of nanoparticles, a set of eleven evaluating criteria have been accredited on the basis of expert opinions and focus group meetings. By amalgamating the intuitionistic fuzzy set (IFS) theory as well as the use of distance-based assessment (CODAS) method, the IFCODAS method has permitted the decision-makers to rate the alternative five nanoparticles pertaining to each criterion. On the basis of the results obtained from IFCODAS method, it is observed that the carbon based nanoparticles have an immense potential to provide significantly reliable and sustainable thermal system than other nanoparticles.