{"title":"神经元钙和IP3信号系统在阿尔茨海默病缺血过程中调节ATP释放的机制","authors":"Anand Pawar, Kamal Raj Pardasani","doi":"10.1007/s00249-023-01660-1","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanisms of calcium ([Ca<sup>2+</sup>]) signaling in various human cells have been widely analyzed by scientists due to its crucial role in human organs like the heartbeat, muscle contractions, bone activity, brain functionality, etc. No study is reported for interdependent [Ca<sup>2+</sup>] and IP<sub>3</sub> mechanics regulating the release of ATP in neuron cells during Ischemia in Alzheimer’s disease advancement. In the present investigation, a finite element method (FEM) is framed to explore the interdependence of spatiotemporal [Ca<sup>2+</sup>] and IP<sub>3</sub> signaling mechanics and its role in ATP release during Ischemia as well as in the advancement of Alzheimer’s disorder in neuron cells. The results provide us insights of the mutual spatiotemporal impacts of [Ca<sup>2+</sup>] and IP<sub>3</sub> mechanics as well as their contributions to ATP release during Ischemia in neuron cells. The results obtained for the mechanics of interdependent systems differ significantly from the results of simple independent system mechanics and provide new information about the processes of the two systems. From this study, it is concluded that neuronal disorders cannot only be simply attributed to the disturbance caused directly in the processes of calcium signaling mechanics, but also to the disturbances caused in IP<sub>3</sub> regulation mechanisms impacting the calcium regulation in the neuron cell and ATP release.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 3","pages":"153 - 173"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanistic insights of neuronal calcium and IP3 signaling system regulating ATP release during ischemia in progression of Alzheimer’s disease\",\"authors\":\"Anand Pawar, Kamal Raj Pardasani\",\"doi\":\"10.1007/s00249-023-01660-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanisms of calcium ([Ca<sup>2+</sup>]) signaling in various human cells have been widely analyzed by scientists due to its crucial role in human organs like the heartbeat, muscle contractions, bone activity, brain functionality, etc. No study is reported for interdependent [Ca<sup>2+</sup>] and IP<sub>3</sub> mechanics regulating the release of ATP in neuron cells during Ischemia in Alzheimer’s disease advancement. In the present investigation, a finite element method (FEM) is framed to explore the interdependence of spatiotemporal [Ca<sup>2+</sup>] and IP<sub>3</sub> signaling mechanics and its role in ATP release during Ischemia as well as in the advancement of Alzheimer’s disorder in neuron cells. The results provide us insights of the mutual spatiotemporal impacts of [Ca<sup>2+</sup>] and IP<sub>3</sub> mechanics as well as their contributions to ATP release during Ischemia in neuron cells. The results obtained for the mechanics of interdependent systems differ significantly from the results of simple independent system mechanics and provide new information about the processes of the two systems. From this study, it is concluded that neuronal disorders cannot only be simply attributed to the disturbance caused directly in the processes of calcium signaling mechanics, but also to the disturbances caused in IP<sub>3</sub> regulation mechanisms impacting the calcium regulation in the neuron cell and ATP release.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 3\",\"pages\":\"153 - 173\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-023-01660-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01660-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Mechanistic insights of neuronal calcium and IP3 signaling system regulating ATP release during ischemia in progression of Alzheimer’s disease
The mechanisms of calcium ([Ca2+]) signaling in various human cells have been widely analyzed by scientists due to its crucial role in human organs like the heartbeat, muscle contractions, bone activity, brain functionality, etc. No study is reported for interdependent [Ca2+] and IP3 mechanics regulating the release of ATP in neuron cells during Ischemia in Alzheimer’s disease advancement. In the present investigation, a finite element method (FEM) is framed to explore the interdependence of spatiotemporal [Ca2+] and IP3 signaling mechanics and its role in ATP release during Ischemia as well as in the advancement of Alzheimer’s disorder in neuron cells. The results provide us insights of the mutual spatiotemporal impacts of [Ca2+] and IP3 mechanics as well as their contributions to ATP release during Ischemia in neuron cells. The results obtained for the mechanics of interdependent systems differ significantly from the results of simple independent system mechanics and provide new information about the processes of the two systems. From this study, it is concluded that neuronal disorders cannot only be simply attributed to the disturbance caused directly in the processes of calcium signaling mechanics, but also to the disturbances caused in IP3 regulation mechanisms impacting the calcium regulation in the neuron cell and ATP release.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.