利用微波成像校正地球静止云液态水路径

IF 1.9 4区 地球科学 Q2 ENGINEERING, OCEAN Journal of Atmospheric and Oceanic Technology Pub Date : 2023-07-11 DOI:10.1175/jtech-d-23-0030.1
K. Smalley, M. Lebsock
{"title":"利用微波成像校正地球静止云液态水路径","authors":"K. Smalley, M. Lebsock","doi":"10.1175/jtech-d-23-0030.1","DOIUrl":null,"url":null,"abstract":"\nGeostationary observations provide measurements of the cloud liquid water path (LWP), permitting continuous observation of cloud evolution throughout the daylit portion of the diurnal cycle. Relative to LWP derived from microwave imagery, these observations have biases related to scattering geometry, which systematically varies throughout the day. Therefore, we have developed a set of bias corrections using microwave LWP for the Geostationary Operational Environmental Satellites (GOES-16 and GOES-17) observations of LWP derived from retrieved cloud-optical properties. The bias corrections are defined based on scattering geometry (solar zenith, sensor zenith, and relative azimuth) and low-cloud fraction. We demonstrate that over the low-cloud regions of the northeast and southeast Pacific, these bias corrections drastically improve the characteristics of the retrieved LWP, including its regional distribution, diurnal variation, and evolution along short-time-scale Lagrangian trajectories.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrections for Geostationary Cloud Liquid Water Path Using Microwave Imagery\",\"authors\":\"K. Smalley, M. Lebsock\",\"doi\":\"10.1175/jtech-d-23-0030.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nGeostationary observations provide measurements of the cloud liquid water path (LWP), permitting continuous observation of cloud evolution throughout the daylit portion of the diurnal cycle. Relative to LWP derived from microwave imagery, these observations have biases related to scattering geometry, which systematically varies throughout the day. Therefore, we have developed a set of bias corrections using microwave LWP for the Geostationary Operational Environmental Satellites (GOES-16 and GOES-17) observations of LWP derived from retrieved cloud-optical properties. The bias corrections are defined based on scattering geometry (solar zenith, sensor zenith, and relative azimuth) and low-cloud fraction. We demonstrate that over the low-cloud regions of the northeast and southeast Pacific, these bias corrections drastically improve the characteristics of the retrieved LWP, including its regional distribution, diurnal variation, and evolution along short-time-scale Lagrangian trajectories.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-23-0030.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0030.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

地球静止观测提供了云-液-水路径(LWP)的测量,允许在昼夜周期的白天部分连续观测云的演变。相对于从微波图像中获得的LWP,这些观测结果具有与散射几何结构相关的偏差,散射几何结构在一天中系统地变化。因此,我们使用微波LWP为地球静止运行环境卫星(GOES-16和GOES-17)从检索到的云光学特性中获得的LWP观测开发了一组偏差校正。偏差校正是根据散射几何结构(太阳天顶、传感器天顶和相对方位角)和低云量定义的。我们证明,在东北太平洋和东南太平洋的低云区,这些偏差校正极大地改善了反演的LWP的特征,包括其区域分布、日变化和沿短时间尺度拉格朗日轨迹的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrections for Geostationary Cloud Liquid Water Path Using Microwave Imagery
Geostationary observations provide measurements of the cloud liquid water path (LWP), permitting continuous observation of cloud evolution throughout the daylit portion of the diurnal cycle. Relative to LWP derived from microwave imagery, these observations have biases related to scattering geometry, which systematically varies throughout the day. Therefore, we have developed a set of bias corrections using microwave LWP for the Geostationary Operational Environmental Satellites (GOES-16 and GOES-17) observations of LWP derived from retrieved cloud-optical properties. The bias corrections are defined based on scattering geometry (solar zenith, sensor zenith, and relative azimuth) and low-cloud fraction. We demonstrate that over the low-cloud regions of the northeast and southeast Pacific, these bias corrections drastically improve the characteristics of the retrieved LWP, including its regional distribution, diurnal variation, and evolution along short-time-scale Lagrangian trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
9.10%
发文量
135
审稿时长
3 months
期刊介绍: The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.
期刊最新文献
Synergistic retrievals of ice in high clouds from elastic backscatter lidar, Ku-band radar and submillimeter wave radiometer observations A Versatile Calibration Method for Rotary-Wing UAS as Wind Measurement Systems A Case of Idiopathic Intracranial Hypertension/Pseudotumor Cerebri Syndrome Cured by Myomectomy. Optimum Estimation of Coastal Currents Using Moving Vehicles Evaluation and Intercomparison of Small Uncrewed Aircraft Systems Used for Atmospheric Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1