谎言,该死的谎言和统计数据:印度COVID-19数字的不确定性

IF 3 Q2 MANAGEMENT Knowledge and Process Management Pub Date : 2021-08-10 DOI:10.1002/kpm.1685
Kiran Mahasuar
{"title":"谎言,该死的谎言和统计数据:印度COVID-19数字的不确定性","authors":"Kiran Mahasuar","doi":"10.1002/kpm.1685","DOIUrl":null,"url":null,"abstract":"<p>This paper intends to ascertain the veracity of reported data on deaths and testing pertaining to the novel coronavirus in India. We use a widely used forensic audit technique called Benford's law to analyze the data, and our findings suggest anomalies in the reported numbers and the reported data for most of the states do not adhere to the Benford distribution. The implications of these findings are manifold, especially on the trajectory of policy-making, vaccination strategy, and preparedness for future waves and new variants. We strongly argue for the need for a robust data collection and reporting mechanism, creating a central data repository, and instituting a data-driven policy framework as key steps in the process management bulwark for managing such future pandemics and other events concerning public health.</p>","PeriodicalId":46428,"journal":{"name":"Knowledge and Process Management","volume":"29 4","pages":"410-417"},"PeriodicalIF":3.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/kpm.1685","citationCount":"2","resultStr":"{\"title\":\"Lies, damned lies, and statistics: The uncertainty over COVID-19 numbers in India\",\"authors\":\"Kiran Mahasuar\",\"doi\":\"10.1002/kpm.1685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper intends to ascertain the veracity of reported data on deaths and testing pertaining to the novel coronavirus in India. We use a widely used forensic audit technique called Benford's law to analyze the data, and our findings suggest anomalies in the reported numbers and the reported data for most of the states do not adhere to the Benford distribution. The implications of these findings are manifold, especially on the trajectory of policy-making, vaccination strategy, and preparedness for future waves and new variants. We strongly argue for the need for a robust data collection and reporting mechanism, creating a central data repository, and instituting a data-driven policy framework as key steps in the process management bulwark for managing such future pandemics and other events concerning public health.</p>\",\"PeriodicalId\":46428,\"journal\":{\"name\":\"Knowledge and Process Management\",\"volume\":\"29 4\",\"pages\":\"410-417\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/kpm.1685\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Process Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kpm.1685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Process Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kpm.1685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在确定有关印度新型冠状病毒的死亡和检测报告数据的准确性。我们使用一种被广泛使用的称为本福德定律的法务审计技术来分析数据,我们的发现表明,大多数州的报告数字和报告数据中的异常情况并不符合本福德分布。这些发现的影响是多方面的,特别是在政策制定、疫苗接种策略以及对未来疫情和新变种的准备方面。我们强烈主张有必要建立健全的数据收集和报告机制,建立一个中央数据存储库,并建立一个数据驱动的政策框架,作为管理未来此类流行病和其他公共卫生事件的进程管理堡垒的关键步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lies, damned lies, and statistics: The uncertainty over COVID-19 numbers in India

This paper intends to ascertain the veracity of reported data on deaths and testing pertaining to the novel coronavirus in India. We use a widely used forensic audit technique called Benford's law to analyze the data, and our findings suggest anomalies in the reported numbers and the reported data for most of the states do not adhere to the Benford distribution. The implications of these findings are manifold, especially on the trajectory of policy-making, vaccination strategy, and preparedness for future waves and new variants. We strongly argue for the need for a robust data collection and reporting mechanism, creating a central data repository, and instituting a data-driven policy framework as key steps in the process management bulwark for managing such future pandemics and other events concerning public health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
16.20%
发文量
41
期刊介绍: Knowledge and Process Management aims to provide essential information to executives responsible for driving performance improvement in their business or for introducing new ideas to business through thought leadership. The journal meets executives" needs for practical information on the lessons learned from other organizations in the areas of: - knowledge management - organizational learning - core competences - process management
期刊最新文献
Issue Information Unethical favouritism and KH: The mediating role of organisational injustice The next event will be held with more quality: Identifying and prioritizing barriers to knowledge management in sports events Context-driven implementation strategies: Exploring three approaches to implement a lean capability framework within a global production company Toward effective KMS measurement: Usage statistics vs. perceived value
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1