{"title":"巴基斯坦穆扎法尔格尔地区某场地基于DSHA的反应谱与巴基斯坦建筑规范(BCP-SP-2007)设计反应谱的比较","authors":"Naseer Ahmed , Shahid Ghazi","doi":"10.1016/j.eqs.2022.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>The building code of any country is considered to be a basic technical guidance document for the seismic design of structures. However, building codes are typically developed for the whole country, without considering site specific models that incorporate detailed site-specific data. Therefore, the adequacy of the design spectrum for building codes may sometimes be questionable. To study the sufficiency of the building codes of Pakistan (BCP-SP-2007), a deterministic seismic hazard analysis (DSHA) based spectrum was developed for a site in the Muzaffargarh area, Pakistan, using an updated earthquake catalogue, seismic source model, and a next generation attenuation model (NGA-WEST-2). Further, an International Building Code (IBC-2000) spectrum was developed for the study area to compare the results. The DSHA-based response spectrum resulted in a peak ground acceleration (PGA) value of 0.21 g for the Chaudwan fault. The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins. A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000. However, special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s, and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12–0.64 s. Finally, BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"35 4","pages":"Pages 280-292"},"PeriodicalIF":1.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451922003512/pdfft?md5=6ec5acea471dccae39d29fa9f000edf7&pid=1-s2.0-S1674451922003512-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of DSHA-based response spectrum with design response spectrum of building code of Pakistan (BCP-SP-2007) for a site in Muzaffargarh area, Pakistan\",\"authors\":\"Naseer Ahmed , Shahid Ghazi\",\"doi\":\"10.1016/j.eqs.2022.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The building code of any country is considered to be a basic technical guidance document for the seismic design of structures. However, building codes are typically developed for the whole country, without considering site specific models that incorporate detailed site-specific data. Therefore, the adequacy of the design spectrum for building codes may sometimes be questionable. To study the sufficiency of the building codes of Pakistan (BCP-SP-2007), a deterministic seismic hazard analysis (DSHA) based spectrum was developed for a site in the Muzaffargarh area, Pakistan, using an updated earthquake catalogue, seismic source model, and a next generation attenuation model (NGA-WEST-2). Further, an International Building Code (IBC-2000) spectrum was developed for the study area to compare the results. The DSHA-based response spectrum resulted in a peak ground acceleration (PGA) value of 0.21 g for the Chaudwan fault. The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins. A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000. However, special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s, and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12–0.64 s. Finally, BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"35 4\",\"pages\":\"Pages 280-292\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003512/pdfft?md5=6ec5acea471dccae39d29fa9f000edf7&pid=1-s2.0-S1674451922003512-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003512\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922003512","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Comparison of DSHA-based response spectrum with design response spectrum of building code of Pakistan (BCP-SP-2007) for a site in Muzaffargarh area, Pakistan
The building code of any country is considered to be a basic technical guidance document for the seismic design of structures. However, building codes are typically developed for the whole country, without considering site specific models that incorporate detailed site-specific data. Therefore, the adequacy of the design spectrum for building codes may sometimes be questionable. To study the sufficiency of the building codes of Pakistan (BCP-SP-2007), a deterministic seismic hazard analysis (DSHA) based spectrum was developed for a site in the Muzaffargarh area, Pakistan, using an updated earthquake catalogue, seismic source model, and a next generation attenuation model (NGA-WEST-2). Further, an International Building Code (IBC-2000) spectrum was developed for the study area to compare the results. The DSHA-based response spectrum resulted in a peak ground acceleration (PGA) value of 0.21 g for the Chaudwan fault. The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins. A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000. However, special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s, and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12–0.64 s. Finally, BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.