反向概率加权差值(IPWDID)

Yuqin Wei, M. Epland, Jingyuan Liu
{"title":"反向概率加权差值(IPWDID)","authors":"Yuqin Wei, M. Epland, Jingyuan Liu","doi":"10.1353/obs.2023.0027","DOIUrl":null,"url":null,"abstract":"Abstract:In this American Causal Inference Conference (ACIC) 2022 challenge submission, the canonical difference-in-differences (DID) estimator has been used with inverse probability weighting (IPW) and strong simplifying assumptions to produce a benchmark model of the sample average treatment effect on the treated (SATT). Despite the restrictive assumptions and simple model, satisfactory performance in both point estimate and confidence intervals was observed, ranking in the top half of the competition.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Probability Weighting Difference-in-Differences (IPWDID)\",\"authors\":\"Yuqin Wei, M. Epland, Jingyuan Liu\",\"doi\":\"10.1353/obs.2023.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:In this American Causal Inference Conference (ACIC) 2022 challenge submission, the canonical difference-in-differences (DID) estimator has been used with inverse probability weighting (IPW) and strong simplifying assumptions to produce a benchmark model of the sample average treatment effect on the treated (SATT). Despite the restrictive assumptions and simple model, satisfactory performance in both point estimate and confidence intervals was observed, ranking in the top half of the competition.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:在2022年美国因果推断会议(ACIC)挑战提交的文件中,标准差分(DID)估计器已与逆概率加权(IPW)和强简化假设一起使用,以生成样本平均治疗对被治疗者(SATT)影响的基准模型。尽管有限制性的假设和简单的模型,但在点估计和置信区间方面都观察到了令人满意的表现,在竞争中排名前半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inverse Probability Weighting Difference-in-Differences (IPWDID)
Abstract:In this American Causal Inference Conference (ACIC) 2022 challenge submission, the canonical difference-in-differences (DID) estimator has been used with inverse probability weighting (IPW) and strong simplifying assumptions to produce a benchmark model of the sample average treatment effect on the treated (SATT). Despite the restrictive assumptions and simple model, satisfactory performance in both point estimate and confidence intervals was observed, ranking in the top half of the competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1