N. P. Tan, S. Paclijan, S. M. Franco, Rodrigo Abella, Jona Crishelle Lague
{"title":"新鲜和未煅烧溶液吹塑纺丝(SBS)纺PAN和PVDF纳米纤维膜去除水中亚甲基蓝染料","authors":"N. P. Tan, S. Paclijan, S. M. Franco, Rodrigo Abella, Jona Crishelle Lague","doi":"10.22079/JMSR.2020.122267.1356","DOIUrl":null,"url":null,"abstract":"Freshly produced and uncalcined solution blow spun-poly (acrylonitrile) (PAN) and poly (vinylidene fluoride) (PVDF) nanofiber (NF) membranes were utilized as adsorptive membranes for methylene blue (MB) dye in water under batch adsorption. The effects of various initial dye solution concentrations (3-15 mg/L) and contact time (1-10 minutes) versus its adsorption capabilities of the nanofiber membranes were studied. Furthermore, adsorption isotherm that best fit the experimental data was determined. The equilibrium adsorption capacity, qe , for both nanofiber membranes increased with MB concentration of 3 - 7 mg/L but qe considerably decreased when such MB amounts increased to 15 mg/L. The highest qe obtained was 50.78 and 34.97 mg/g for PAN NF and PVDF NF membranes, respectively. Both NF membranes also showed high MB adsorption with increased contact time until equilibrium was reached. PAN demonstrated better adsorption capacity compared to PVDF at all levels of initial dye concentrations studied. Both nanofiber membranes are proposed to conform to the Dubinin-Radushkevich adsorption isotherm model. Using this model, the predicted values for the highest adsorption capacity, qmax, of PAN and PVDF NF membranes are 55.91 mg/g and 44.06 mg/g, respectively.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fresh and Uncalcined Solution Blow Spinning (SBS)-spun PAN and PVDF Nanofiber Membranes for Methylene blue dye Removal in Water\",\"authors\":\"N. P. Tan, S. Paclijan, S. M. Franco, Rodrigo Abella, Jona Crishelle Lague\",\"doi\":\"10.22079/JMSR.2020.122267.1356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freshly produced and uncalcined solution blow spun-poly (acrylonitrile) (PAN) and poly (vinylidene fluoride) (PVDF) nanofiber (NF) membranes were utilized as adsorptive membranes for methylene blue (MB) dye in water under batch adsorption. The effects of various initial dye solution concentrations (3-15 mg/L) and contact time (1-10 minutes) versus its adsorption capabilities of the nanofiber membranes were studied. Furthermore, adsorption isotherm that best fit the experimental data was determined. The equilibrium adsorption capacity, qe , for both nanofiber membranes increased with MB concentration of 3 - 7 mg/L but qe considerably decreased when such MB amounts increased to 15 mg/L. The highest qe obtained was 50.78 and 34.97 mg/g for PAN NF and PVDF NF membranes, respectively. Both NF membranes also showed high MB adsorption with increased contact time until equilibrium was reached. PAN demonstrated better adsorption capacity compared to PVDF at all levels of initial dye concentrations studied. Both nanofiber membranes are proposed to conform to the Dubinin-Radushkevich adsorption isotherm model. Using this model, the predicted values for the highest adsorption capacity, qmax, of PAN and PVDF NF membranes are 55.91 mg/g and 44.06 mg/g, respectively.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2020.122267.1356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2020.122267.1356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Fresh and Uncalcined Solution Blow Spinning (SBS)-spun PAN and PVDF Nanofiber Membranes for Methylene blue dye Removal in Water
Freshly produced and uncalcined solution blow spun-poly (acrylonitrile) (PAN) and poly (vinylidene fluoride) (PVDF) nanofiber (NF) membranes were utilized as adsorptive membranes for methylene blue (MB) dye in water under batch adsorption. The effects of various initial dye solution concentrations (3-15 mg/L) and contact time (1-10 minutes) versus its adsorption capabilities of the nanofiber membranes were studied. Furthermore, adsorption isotherm that best fit the experimental data was determined. The equilibrium adsorption capacity, qe , for both nanofiber membranes increased with MB concentration of 3 - 7 mg/L but qe considerably decreased when such MB amounts increased to 15 mg/L. The highest qe obtained was 50.78 and 34.97 mg/g for PAN NF and PVDF NF membranes, respectively. Both NF membranes also showed high MB adsorption with increased contact time until equilibrium was reached. PAN demonstrated better adsorption capacity compared to PVDF at all levels of initial dye concentrations studied. Both nanofiber membranes are proposed to conform to the Dubinin-Radushkevich adsorption isotherm model. Using this model, the predicted values for the highest adsorption capacity, qmax, of PAN and PVDF NF membranes are 55.91 mg/g and 44.06 mg/g, respectively.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.