{"title":"喜马拉雅东北部及邻近地区地震的频率-震级分布和空间相关维数","authors":"Rambooshan Tiwari, H. Paudyal","doi":"10.2478/logos-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract The north-east sector of the Himalaya is one of the most active tectonic belts, with complex geological and tectonic features. The b-value and spatial correlation dimension (Dc) of earthquake distribution in the north-east Himalaya and its adjacent regions (20–32°N and 88–98°E) are estimated in the present study. Based on seismicity and faulting pattern, the region is divided into five active regions, namely the (i) South-Tibet, (ii) Eastern-Syntaxis, (iii) Himalayan-Frontal Arc, (iv) Arakan-Yoma belt and (v) Shillong-Plateau. A homogeneous catalogue of 1,416 earthquakes (mb ≥ 4.5) has been prepared from a revised catalogue of the ISC (International Seismological Centre). The b-value has been appraised by the maximum likelihood estimation method, while Dc values have been calculated by the correlation integral method; b-values of 1.08 ± 0.09, 1.13 ± 0.05, 0.92 ± 0.05, 1.00 ± 0.03 and 0.98 ± 0.08 have been computed for the South-Tibet, Eastern-Syntaxis, Himalayan-Frontal Arc, Arakan-Yoma belt and Shillong-Plateau region, respectively. The Dc values computed for the respective regions are 1.36 ± 0.02, 1.74 ± 0.04, 1.57 ± 0.01, 1.8 ± 0.01, and 1.83 ± 0.02. These values are > 1.5, except for the South-Tibet (1.36 ± 0.02). The b-values around the global average value (1.0) reflect the stress level and seismic activity of the regions, while high Dc values refer to the heterogeneity of the seismogenic sources.","PeriodicalId":44833,"journal":{"name":"Geologos","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency magnitude distribution and spatial correlation dimension of earthquakes in north-east Himalaya and adjacent regions\",\"authors\":\"Rambooshan Tiwari, H. Paudyal\",\"doi\":\"10.2478/logos-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The north-east sector of the Himalaya is one of the most active tectonic belts, with complex geological and tectonic features. The b-value and spatial correlation dimension (Dc) of earthquake distribution in the north-east Himalaya and its adjacent regions (20–32°N and 88–98°E) are estimated in the present study. Based on seismicity and faulting pattern, the region is divided into five active regions, namely the (i) South-Tibet, (ii) Eastern-Syntaxis, (iii) Himalayan-Frontal Arc, (iv) Arakan-Yoma belt and (v) Shillong-Plateau. A homogeneous catalogue of 1,416 earthquakes (mb ≥ 4.5) has been prepared from a revised catalogue of the ISC (International Seismological Centre). The b-value has been appraised by the maximum likelihood estimation method, while Dc values have been calculated by the correlation integral method; b-values of 1.08 ± 0.09, 1.13 ± 0.05, 0.92 ± 0.05, 1.00 ± 0.03 and 0.98 ± 0.08 have been computed for the South-Tibet, Eastern-Syntaxis, Himalayan-Frontal Arc, Arakan-Yoma belt and Shillong-Plateau region, respectively. The Dc values computed for the respective regions are 1.36 ± 0.02, 1.74 ± 0.04, 1.57 ± 0.01, 1.8 ± 0.01, and 1.83 ± 0.02. These values are > 1.5, except for the South-Tibet (1.36 ± 0.02). The b-values around the global average value (1.0) reflect the stress level and seismic activity of the regions, while high Dc values refer to the heterogeneity of the seismogenic sources.\",\"PeriodicalId\":44833,\"journal\":{\"name\":\"Geologos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/logos-2022-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/logos-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Frequency magnitude distribution and spatial correlation dimension of earthquakes in north-east Himalaya and adjacent regions
Abstract The north-east sector of the Himalaya is one of the most active tectonic belts, with complex geological and tectonic features. The b-value and spatial correlation dimension (Dc) of earthquake distribution in the north-east Himalaya and its adjacent regions (20–32°N and 88–98°E) are estimated in the present study. Based on seismicity and faulting pattern, the region is divided into five active regions, namely the (i) South-Tibet, (ii) Eastern-Syntaxis, (iii) Himalayan-Frontal Arc, (iv) Arakan-Yoma belt and (v) Shillong-Plateau. A homogeneous catalogue of 1,416 earthquakes (mb ≥ 4.5) has been prepared from a revised catalogue of the ISC (International Seismological Centre). The b-value has been appraised by the maximum likelihood estimation method, while Dc values have been calculated by the correlation integral method; b-values of 1.08 ± 0.09, 1.13 ± 0.05, 0.92 ± 0.05, 1.00 ± 0.03 and 0.98 ± 0.08 have been computed for the South-Tibet, Eastern-Syntaxis, Himalayan-Frontal Arc, Arakan-Yoma belt and Shillong-Plateau region, respectively. The Dc values computed for the respective regions are 1.36 ± 0.02, 1.74 ± 0.04, 1.57 ± 0.01, 1.8 ± 0.01, and 1.83 ± 0.02. These values are > 1.5, except for the South-Tibet (1.36 ± 0.02). The b-values around the global average value (1.0) reflect the stress level and seismic activity of the regions, while high Dc values refer to the heterogeneity of the seismogenic sources.