{"title":"不同粒径氧化锌对水稻根系发育的影响","authors":"Monica Ruffini Castiglione , Stefania Bottega , Carlo Sorce , Carmelina SpanÒ","doi":"10.1016/j.rsci.2023.03.016","DOIUrl":null,"url":null,"abstract":"<div><p>Given the consistent release of zinc oxide (ZnO) nanoparticles into the environment, it is urgent to study their impact on plants in depth. In this study, grains of rice were treated with two different concentrations of ZnO nanoparticles (NP-ZnO, 10 and 100 mg/L), and their bulk counterpart (B-ZnO) were used to evaluate whether ZnO action could depend on particle size. To test this hypothesis, root growth and development assessment, oxidative stress parameters, indole-3-acetic acid (IAA) content and molecules/enzymes involved in IAA metabolism were analyzed. <em>In situ</em> localization of Zn in control and treated roots was also performed. Though Zn was visible inside root cells only following nanoparticle treatment, both materials (NP-ZnO and B-ZnO) were able to affect seedling growth and root morphology, with alteration in the concentration/pattern of localization of oxidative stress markers and with a different action depending on particle size. In addition, only ZnO supplied as bulk material induced a significant increase in both IAA concentration and lateral root density, supporting our hypothesis that bulk particles might enhance lateral root development through the rise of IAA concentration. Apparently, IAA concentration was influenced more by the activity of the catabolic peroxidases than by the protective action of phenols.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 5","pages":"Pages 449-458"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa\",\"authors\":\"Monica Ruffini Castiglione , Stefania Bottega , Carlo Sorce , Carmelina SpanÒ\",\"doi\":\"10.1016/j.rsci.2023.03.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the consistent release of zinc oxide (ZnO) nanoparticles into the environment, it is urgent to study their impact on plants in depth. In this study, grains of rice were treated with two different concentrations of ZnO nanoparticles (NP-ZnO, 10 and 100 mg/L), and their bulk counterpart (B-ZnO) were used to evaluate whether ZnO action could depend on particle size. To test this hypothesis, root growth and development assessment, oxidative stress parameters, indole-3-acetic acid (IAA) content and molecules/enzymes involved in IAA metabolism were analyzed. <em>In situ</em> localization of Zn in control and treated roots was also performed. Though Zn was visible inside root cells only following nanoparticle treatment, both materials (NP-ZnO and B-ZnO) were able to affect seedling growth and root morphology, with alteration in the concentration/pattern of localization of oxidative stress markers and with a different action depending on particle size. In addition, only ZnO supplied as bulk material induced a significant increase in both IAA concentration and lateral root density, supporting our hypothesis that bulk particles might enhance lateral root development through the rise of IAA concentration. Apparently, IAA concentration was influenced more by the activity of the catabolic peroxidases than by the protective action of phenols.</p></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":\"30 5\",\"pages\":\"Pages 449-458\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000641\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630823000641","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa
Given the consistent release of zinc oxide (ZnO) nanoparticles into the environment, it is urgent to study their impact on plants in depth. In this study, grains of rice were treated with two different concentrations of ZnO nanoparticles (NP-ZnO, 10 and 100 mg/L), and their bulk counterpart (B-ZnO) were used to evaluate whether ZnO action could depend on particle size. To test this hypothesis, root growth and development assessment, oxidative stress parameters, indole-3-acetic acid (IAA) content and molecules/enzymes involved in IAA metabolism were analyzed. In situ localization of Zn in control and treated roots was also performed. Though Zn was visible inside root cells only following nanoparticle treatment, both materials (NP-ZnO and B-ZnO) were able to affect seedling growth and root morphology, with alteration in the concentration/pattern of localization of oxidative stress markers and with a different action depending on particle size. In addition, only ZnO supplied as bulk material induced a significant increase in both IAA concentration and lateral root density, supporting our hypothesis that bulk particles might enhance lateral root development through the rise of IAA concentration. Apparently, IAA concentration was influenced more by the activity of the catabolic peroxidases than by the protective action of phenols.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.