不同水文条件下放射性核素在大亚湾乏燃料运输中的扩散研究

IF 1 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Science and Technology of Nuclear Installations Pub Date : 2022-06-10 DOI:10.1155/2022/7265821
Liwei Chen, Wei Chen, Jiazhen Lin, Chunhua Chen, Yalin Luo, Longlong Tao
{"title":"不同水文条件下放射性核素在大亚湾乏燃料运输中的扩散研究","authors":"Liwei Chen, Wei Chen, Jiazhen Lin, Chunhua Chen, Yalin Luo, Longlong Tao","doi":"10.1155/2022/7265821","DOIUrl":null,"url":null,"abstract":"The radionuclide dispersion in coastal water is mainly controlled by the water flow and tidal effect. Tracing and analysis of radioactive pollutant dispersion in coastal water can predict distribution of radionuclide under marine transportation accident of spent fuel. In this work, factors such as continuous emission, radioactive decay, and water depth are considered, and a hydrodynamic model of radionuclide dispersion based on shallow water equations is established to simulate the dispersion of the radioactive pollutant in coastal waters under different hydrological conditions. As far as the characteristics of the radionuclide dispersion in coastal water are concerned, the simulation of pollutants by the hydrodynamic model is in good agreement with the work of Bailly du Bois et al., which validated the correctness of this model. The model has been applied to simulate the distribution of radionuclides in coastal water following a marine transport accident of spent fuel near Daya Bay Nuclear Power Plant in China. The simulation reveals that the distribution features are significantly affected by different hydrological conditions. In addition to limiting the diffusion range, the vortex effect can also cause the accumulation of radionuclides near the vortex, which helps to provide more practical information for nuclear emergency decision makers.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on the Dispersion of Radionuclides under Different Hydrological Conditions of Spent Fuel Shipping in Daya Bay\",\"authors\":\"Liwei Chen, Wei Chen, Jiazhen Lin, Chunhua Chen, Yalin Luo, Longlong Tao\",\"doi\":\"10.1155/2022/7265821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radionuclide dispersion in coastal water is mainly controlled by the water flow and tidal effect. Tracing and analysis of radioactive pollutant dispersion in coastal water can predict distribution of radionuclide under marine transportation accident of spent fuel. In this work, factors such as continuous emission, radioactive decay, and water depth are considered, and a hydrodynamic model of radionuclide dispersion based on shallow water equations is established to simulate the dispersion of the radioactive pollutant in coastal waters under different hydrological conditions. As far as the characteristics of the radionuclide dispersion in coastal water are concerned, the simulation of pollutants by the hydrodynamic model is in good agreement with the work of Bailly du Bois et al., which validated the correctness of this model. The model has been applied to simulate the distribution of radionuclides in coastal water following a marine transport accident of spent fuel near Daya Bay Nuclear Power Plant in China. The simulation reveals that the distribution features are significantly affected by different hydrological conditions. In addition to limiting the diffusion range, the vortex effect can also cause the accumulation of radionuclides near the vortex, which helps to provide more practical information for nuclear emergency decision makers.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7265821\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/7265821","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

放射性核素在沿海水体中的扩散主要受水流和潮汐效应的控制。对放射性污染物在近海的扩散进行跟踪分析,可以预测乏燃料海上运输事故下放射性核素的分布。本文考虑了连续排放、放射性衰变和水深等因素,建立了基于浅水方程的放射性核素扩散水动力学模型,模拟了不同水文条件下放射性污染物在沿海水域的扩散。就放射性核素在沿海水中的扩散特性而言,流体动力学模型对污染物的模拟与Bailly du Bois等人的工作非常一致,验证了该模型的正确性。该模型已用于模拟中国大亚湾核电站附近乏燃料海上运输事故后沿海水中放射性核素的分布。模拟结果表明,不同水文条件对其分布特征有显著影响。涡流效应除了限制扩散范围外,还可以导致放射性核素在涡流附近积聚,这有助于为核应急决策者提供更实用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Dispersion of Radionuclides under Different Hydrological Conditions of Spent Fuel Shipping in Daya Bay
The radionuclide dispersion in coastal water is mainly controlled by the water flow and tidal effect. Tracing and analysis of radioactive pollutant dispersion in coastal water can predict distribution of radionuclide under marine transportation accident of spent fuel. In this work, factors such as continuous emission, radioactive decay, and water depth are considered, and a hydrodynamic model of radionuclide dispersion based on shallow water equations is established to simulate the dispersion of the radioactive pollutant in coastal waters under different hydrological conditions. As far as the characteristics of the radionuclide dispersion in coastal water are concerned, the simulation of pollutants by the hydrodynamic model is in good agreement with the work of Bailly du Bois et al., which validated the correctness of this model. The model has been applied to simulate the distribution of radionuclides in coastal water following a marine transport accident of spent fuel near Daya Bay Nuclear Power Plant in China. The simulation reveals that the distribution features are significantly affected by different hydrological conditions. In addition to limiting the diffusion range, the vortex effect can also cause the accumulation of radionuclides near the vortex, which helps to provide more practical information for nuclear emergency decision makers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Nuclear Installations
Science and Technology of Nuclear Installations NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.
期刊最新文献
Assessment of Radiation Dose Associated with the Atmospheric Release of 41Ar from the TRIGA Mark-II Research Reactor in Bangladesh Design Change and Operational Consideration of the HVAC System during Nuclear Power Plant Decommissioning Accuracy Evaluation of Monte Carlo Simulation Results Using ENDF/B-VIII.0 and JENDL-5 Libraries for 10 MWth Micro Heat Pipe-Cooled Reactor Effect of Photomultiplier Tube Voltage on the Performance of Sealed NaI (Tl) Scintillator Detectors An Association Rule Mining-Based Method for Revealing the Impact of Operational Sequence on Nuclear Power Plants Operating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1