约束聚合对策的指数收敛分布式纳什均衡寻求

Shu Liang, Peng Yi, Yiguang Hong, Kaixiang Peng
{"title":"约束聚合对策的指数收敛分布式纳什均衡寻求","authors":"Shu Liang,&nbsp;Peng Yi,&nbsp;Yiguang Hong,&nbsp;Kaixiang Peng","doi":"10.1007/s43684-022-00024-4","DOIUrl":null,"url":null,"abstract":"<div><p>Distributed Nash equilibrium seeking of aggregative games is investigated and a continuous-time algorithm is proposed. The algorithm is designed by virtue of projected gradient play dynamics and aggregation tracking dynamics, and is applicable to games with constrained strategy sets and weight-balanced communication graphs. The key feature of our method is that the proposed projected dynamics achieves exponential convergence, whereas such convergence results are only obtained for non-projected dynamics in existing works on distributed optimization and equilibrium seeking. Numerical examples illustrate the effectiveness of our methods.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-022-00024-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games\",\"authors\":\"Shu Liang,&nbsp;Peng Yi,&nbsp;Yiguang Hong,&nbsp;Kaixiang Peng\",\"doi\":\"10.1007/s43684-022-00024-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distributed Nash equilibrium seeking of aggregative games is investigated and a continuous-time algorithm is proposed. The algorithm is designed by virtue of projected gradient play dynamics and aggregation tracking dynamics, and is applicable to games with constrained strategy sets and weight-balanced communication graphs. The key feature of our method is that the proposed projected dynamics achieves exponential convergence, whereas such convergence results are only obtained for non-projected dynamics in existing works on distributed optimization and equilibrium seeking. Numerical examples illustrate the effectiveness of our methods.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-022-00024-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-022-00024-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-022-00024-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了聚合博弈的分布式纳什均衡寻求,并提出了一种连续时间算法。该算法是根据投影梯度博弈动力学和聚合跟踪动力学设计的,适用于具有受限策略集和权重平衡通信图的博弈。我们的方法的主要特点是所提出的投影动力学实现了指数收敛,而在现有的分布式优化和均衡寻求著作中,只有非投影动力学才能获得这样的收敛结果。数值示例说明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games

Distributed Nash equilibrium seeking of aggregative games is investigated and a continuous-time algorithm is proposed. The algorithm is designed by virtue of projected gradient play dynamics and aggregation tracking dynamics, and is applicable to games with constrained strategy sets and weight-balanced communication graphs. The key feature of our method is that the proposed projected dynamics achieves exponential convergence, whereas such convergence results are only obtained for non-projected dynamics in existing works on distributed optimization and equilibrium seeking. Numerical examples illustrate the effectiveness of our methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1