海水碳酸盐化学对拟双壳虫和其他拟双壳类稳定同位素组成的影响

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2023-09-01 DOI:10.1029/2023PA004667
Alexandra J. Nederbragt
{"title":"海水碳酸盐化学对拟双壳虫和其他拟双壳类稳定同位素组成的影响","authors":"Alexandra J. Nederbragt","doi":"10.1029/2023PA004667","DOIUrl":null,"url":null,"abstract":"The δ13C composition of Cibicidoides wuellerstorfi and other Cibicidoides spp is an important tool to reconstruct past changes in the deep ocean carbon cycle. The species are expected to match the δ13C of ambient dissolved inorganic carbon (DIC), although it has been recognized that substantial offsets can occur. Here, I present a compilation of modern δ13C and δ18O data for named Cibicidoides species in combination with fully resolved carbonate chemistry at each core location. The data show for C. wuellerstorfi that the offset from the expected value in both carbon (∆13C) and oxygen (∆18O) is correlated with seawater carbonate chemistry. The result is comparable to, but not identical with, published culture experiments in which marine organisms were grown under variable pH‐conditions. Overall, ∆13C in C. wuellerstorfi correlates positively with carbonate saturation, [DIC], and temperature. The three variables together explain 47.1% of the variation in ∆13C. The trend for ∆18O is similar, except that the effect of temperature has been removed through correction with a published δ18O‐temperature equation. Up to 35% of the remaining variation in ∆18O can be explained by ambient carbonate chemistry. Data for other named Cibicidoides species are broadly similar, but are too sparse for a detailed analysis. The results indicate that strongly negative ∆13C occurs predominantly in the deep Atlantic in response to a combination of low [DIC], low temperature, and undersaturation within the lysocline. Implications for paleoceanographic reconstructions are discussed.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Effect of Seawater Carbonate Chemistry on the Stable Isotope Composition of Cibicidoides wuellerstorfi and Other Cibicidoides Species\",\"authors\":\"Alexandra J. Nederbragt\",\"doi\":\"10.1029/2023PA004667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The δ13C composition of Cibicidoides wuellerstorfi and other Cibicidoides spp is an important tool to reconstruct past changes in the deep ocean carbon cycle. The species are expected to match the δ13C of ambient dissolved inorganic carbon (DIC), although it has been recognized that substantial offsets can occur. Here, I present a compilation of modern δ13C and δ18O data for named Cibicidoides species in combination with fully resolved carbonate chemistry at each core location. The data show for C. wuellerstorfi that the offset from the expected value in both carbon (∆13C) and oxygen (∆18O) is correlated with seawater carbonate chemistry. The result is comparable to, but not identical with, published culture experiments in which marine organisms were grown under variable pH‐conditions. Overall, ∆13C in C. wuellerstorfi correlates positively with carbonate saturation, [DIC], and temperature. The three variables together explain 47.1% of the variation in ∆13C. The trend for ∆18O is similar, except that the effect of temperature has been removed through correction with a published δ18O‐temperature equation. Up to 35% of the remaining variation in ∆18O can be explained by ambient carbonate chemistry. Data for other named Cibicidoides species are broadly similar, but are too sparse for a detailed analysis. The results indicate that strongly negative ∆13C occurs predominantly in the deep Atlantic in response to a combination of low [DIC], low temperature, and undersaturation within the lysocline. Implications for paleoceanographic reconstructions are discussed.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023PA004667\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023PA004667","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

wuellerstorfi和其他Cibicidoides spp的δ13C组成是重建深海碳循环过去变化的重要工具。预计该物种将与环境溶解无机碳(DIC)的δ13C相匹配,尽管人们已经认识到可能会发生大量偏移。在这里,我提供了一份已命名Cibicidoides物种的现代δ13C和δ18O数据汇编,并结合每个岩芯位置的完全解析碳酸盐化学。数据显示,C.wuellerstorfi的碳(∆13C)和氧(∆18O)与预期值的偏差与海水碳酸盐化学有关。这一结果与已发表的海洋生物在不同pH条件下生长的培养实验相当,但并不完全相同。总体而言,C.wuellerstorfi中的∆13C与碳酸盐饱和度[DIC]和温度呈正相关。这三个变量共同解释了∆13C变化的47.1%。∆18O的趋势相似,只是通过使用已发布的δ18O温度方程进行校正,消除了温度的影响。∆18O中高达35%的剩余变化可以通过环境碳酸盐化学来解释。其他命名的Cibicidoides物种的数据大致相似,但过于稀疏,无法进行详细分析。结果表明,强负∆13C主要发生在大西洋深处,这是对低[DIC]、低温和赖ocline内不饱和的综合反应。讨论了古海洋重建的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Seawater Carbonate Chemistry on the Stable Isotope Composition of Cibicidoides wuellerstorfi and Other Cibicidoides Species
The δ13C composition of Cibicidoides wuellerstorfi and other Cibicidoides spp is an important tool to reconstruct past changes in the deep ocean carbon cycle. The species are expected to match the δ13C of ambient dissolved inorganic carbon (DIC), although it has been recognized that substantial offsets can occur. Here, I present a compilation of modern δ13C and δ18O data for named Cibicidoides species in combination with fully resolved carbonate chemistry at each core location. The data show for C. wuellerstorfi that the offset from the expected value in both carbon (∆13C) and oxygen (∆18O) is correlated with seawater carbonate chemistry. The result is comparable to, but not identical with, published culture experiments in which marine organisms were grown under variable pH‐conditions. Overall, ∆13C in C. wuellerstorfi correlates positively with carbonate saturation, [DIC], and temperature. The three variables together explain 47.1% of the variation in ∆13C. The trend for ∆18O is similar, except that the effect of temperature has been removed through correction with a published δ18O‐temperature equation. Up to 35% of the remaining variation in ∆18O can be explained by ambient carbonate chemistry. Data for other named Cibicidoides species are broadly similar, but are too sparse for a detailed analysis. The results indicate that strongly negative ∆13C occurs predominantly in the deep Atlantic in response to a combination of low [DIC], low temperature, and undersaturation within the lysocline. Implications for paleoceanographic reconstructions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Extreme Planktic Foraminiferal Dwarfism Across the ETM2 in the Tethys Realm in Response to Warming Reconstruction of Cenozoic δ11Bsw Using a Gaussian Process Impact of Intra‐Skeletal Calcite on the Preservation of Coral Geochemistry and Implications for Paleoclimate Reconstruction Tropical Warming and Intensification of the West African Monsoon During the Miocene Climatic Optimum Shell Reworking Impacts on Climate Variability Reconstructions Using Individual Foraminiferal Analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1