网络拓扑结构能够有效应对多头绒泡菌的环境

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2023-04-11 DOI:10.1101/2022.11.09.515897
Siyu Chen, K. Alim
{"title":"网络拓扑结构能够有效应对多头绒泡菌的环境","authors":"Siyu Chen, K. Alim","doi":"10.1101/2022.11.09.515897","DOIUrl":null,"url":null,"abstract":"The network-shaped body plan distinguishes the unicellular slime mould Physarum polycephalum in body architecture from other unicellular organisms. Yet, network-shaped body plans dominate branches of multi-cellular life such as in fungi. What survival advantage does a network structure provide when facing a dynamic environment with adverse conditions? Here, we probe how network topology impacts P. polycephalum’s avoidance response to an adverse blue light. We stimulate either an elongated, I-shaped amoeboid or a Y-shaped networked specimen and subsequently quantify the evacuation process of the light-exposed body part. The result shows that Y-shaped specimen complete the avoidance retraction in a comparable time frame, even slightly faster than I-shaped organisms, yet, at a lower almost negligible increase in migration velocity. Contraction amplitude driving mass motion is further only locally increased in Y-shaped specimen compared to I-shaped—providing further evidence that Y-shaped’s avoidance reaction is energetically more efficient than in I-shaped amoeboid organisms. The difference in the retraction behaviour suggests that the complexity of network topology provides a key advantage when encountering adverse environments. Our findings could lead to a better understanding of the transition from unicellular to multicellularity.","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network topology enables efficient response to environment in Physarum polycephalum\",\"authors\":\"Siyu Chen, K. Alim\",\"doi\":\"10.1101/2022.11.09.515897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The network-shaped body plan distinguishes the unicellular slime mould Physarum polycephalum in body architecture from other unicellular organisms. Yet, network-shaped body plans dominate branches of multi-cellular life such as in fungi. What survival advantage does a network structure provide when facing a dynamic environment with adverse conditions? Here, we probe how network topology impacts P. polycephalum’s avoidance response to an adverse blue light. We stimulate either an elongated, I-shaped amoeboid or a Y-shaped networked specimen and subsequently quantify the evacuation process of the light-exposed body part. The result shows that Y-shaped specimen complete the avoidance retraction in a comparable time frame, even slightly faster than I-shaped organisms, yet, at a lower almost negligible increase in migration velocity. Contraction amplitude driving mass motion is further only locally increased in Y-shaped specimen compared to I-shaped—providing further evidence that Y-shaped’s avoidance reaction is energetically more efficient than in I-shaped amoeboid organisms. The difference in the retraction behaviour suggests that the complexity of network topology provides a key advantage when encountering adverse environments. Our findings could lead to a better understanding of the transition from unicellular to multicellularity.\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.11.09.515897\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/2022.11.09.515897","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

网状的身体平面图将单细胞黏菌多头绒泡菌在身体结构上与其他单细胞生物区分开来。然而,网状的身体计划主宰着多细胞生命的分支,比如真菌。当面对具有不利条件的动态环境时,网络结构提供了什么生存优势?在这里,我们探讨了网络拓扑结构如何影响小头虫对不利蓝光的回避反应。我们刺激细长的I形变形虫或Y形网状标本,然后量化暴露在光下的身体部位的排空过程。结果表明,Y形标本在相当的时间内完成了回避回缩,甚至比I形生物略快,但迁移速度的增加几乎可以忽略不计。与I形相比,Y形标本中驱动质量运动的收缩幅度仅局部增加,这进一步证明Y形标本的回避反应在能量上比I形变形虫生物更有效。收缩行为的差异表明,当遇到不利环境时,网络拓扑的复杂性提供了一个关键优势。我们的发现可以更好地理解从单细胞到多细胞的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network topology enables efficient response to environment in Physarum polycephalum
The network-shaped body plan distinguishes the unicellular slime mould Physarum polycephalum in body architecture from other unicellular organisms. Yet, network-shaped body plans dominate branches of multi-cellular life such as in fungi. What survival advantage does a network structure provide when facing a dynamic environment with adverse conditions? Here, we probe how network topology impacts P. polycephalum’s avoidance response to an adverse blue light. We stimulate either an elongated, I-shaped amoeboid or a Y-shaped networked specimen and subsequently quantify the evacuation process of the light-exposed body part. The result shows that Y-shaped specimen complete the avoidance retraction in a comparable time frame, even slightly faster than I-shaped organisms, yet, at a lower almost negligible increase in migration velocity. Contraction amplitude driving mass motion is further only locally increased in Y-shaped specimen compared to I-shaped—providing further evidence that Y-shaped’s avoidance reaction is energetically more efficient than in I-shaped amoeboid organisms. The difference in the retraction behaviour suggests that the complexity of network topology provides a key advantage when encountering adverse environments. Our findings could lead to a better understanding of the transition from unicellular to multicellularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1