混合移动平均均值过程的监测——修正的指数加权移动平均控制图

Khanittha Talordphop, S. Sukparungsee, Y. Areepong
{"title":"混合移动平均均值过程的监测——修正的指数加权移动平均控制图","authors":"Khanittha Talordphop, S. Sukparungsee, Y. Areepong","doi":"10.14416/j.asep.2022.12.002","DOIUrl":null,"url":null,"abstract":"In Statistical Process Control, a control chart is the most effective equipment for monitoring and improving processes. Classic control charts were created in the past and were effective at detecting both small and large changes. However, the mixed control chart has been presented to improve the performance of the traditional control chart. This research introduces a new mixed control chart, MA-MEWMA, which combines the moving average (MA) and the modified exponentially weighted moving average (MEWMA) charts to detect the tiny changes in the procedures both of symmetric and asymmetric distributions. The average run length (ARL) can also be used to measure progress in the MA-MEWMA chart with Shewhart, MA, and MEWMA charts that employ Monte Carlo simulation. The experiments demonstrated that the proposed chart had a greater impact compared to all other control charts with the parameter level ±0.05, ±0.10, ±0.25, ±0.50, ±0.75, ±1.00, ±1.50 through discovering a change in the average of the method in the control where ARL0 = 370. On the other hand, when the parameter level was set to 2.00, ±3.00, ±4.00, the MA control chart performed admirably. An excellent example is data set on viscosity from a batch chemical process. Environmental information data were provided to explain how the suggested chart and MA-MEWMA charts are implemented, demonstrating that the MA-MEWMA chart was more successful than other charts in detecting changes.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring of Mean Processes with Mixed Moving Average – Modified Exponentially Weighted Moving Average Control Charts\",\"authors\":\"Khanittha Talordphop, S. Sukparungsee, Y. Areepong\",\"doi\":\"10.14416/j.asep.2022.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Statistical Process Control, a control chart is the most effective equipment for monitoring and improving processes. Classic control charts were created in the past and were effective at detecting both small and large changes. However, the mixed control chart has been presented to improve the performance of the traditional control chart. This research introduces a new mixed control chart, MA-MEWMA, which combines the moving average (MA) and the modified exponentially weighted moving average (MEWMA) charts to detect the tiny changes in the procedures both of symmetric and asymmetric distributions. The average run length (ARL) can also be used to measure progress in the MA-MEWMA chart with Shewhart, MA, and MEWMA charts that employ Monte Carlo simulation. The experiments demonstrated that the proposed chart had a greater impact compared to all other control charts with the parameter level ±0.05, ±0.10, ±0.25, ±0.50, ±0.75, ±1.00, ±1.50 through discovering a change in the average of the method in the control where ARL0 = 370. On the other hand, when the parameter level was set to 2.00, ±3.00, ±4.00, the MA control chart performed admirably. An excellent example is data set on viscosity from a batch chemical process. Environmental information data were provided to explain how the suggested chart and MA-MEWMA charts are implemented, demonstrating that the MA-MEWMA chart was more successful than other charts in detecting changes.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2022.12.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2022.12.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在统计过程控制中,控制图是监控和改进过程的最有效设备。经典的控制图是在过去创建的,在检测小变化和大变化方面都很有效。然而,为了提高传统控制图的性能,已经提出了混合控制图。本研究引入了一种新的混合控制图MA-MEWMA,它结合了移动平均(MA)和修正的指数加权移动平均(MEWMA)图来检测对称和非对称分布过程中的微小变化。平均行程长度(ARL)也可用于测量MA-MEWMA图表中的进度,其中Shewhart、MA和MEWMA图表采用蒙特卡罗模拟。实验表明,与参数水平为±0.05、±0.10、±0.25、±0.50、±0.75、±1.00、±1.50的所有其他对照图相比,所提出的图表具有更大的影响,因为在ARL0=370的对照中发现了该方法的平均值的变化。另一方面,当参数水平设置为2.00、±3.00、±4.00时,MA控制图的表现令人钦佩。一个很好的例子是来自间歇化学过程的粘度数据集。提供了环境信息数据来解释建议的图表和MA-MEWMA图表是如何实施的,表明MA-MEWMA图表在检测变化方面比其他图表更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring of Mean Processes with Mixed Moving Average – Modified Exponentially Weighted Moving Average Control Charts
In Statistical Process Control, a control chart is the most effective equipment for monitoring and improving processes. Classic control charts were created in the past and were effective at detecting both small and large changes. However, the mixed control chart has been presented to improve the performance of the traditional control chart. This research introduces a new mixed control chart, MA-MEWMA, which combines the moving average (MA) and the modified exponentially weighted moving average (MEWMA) charts to detect the tiny changes in the procedures both of symmetric and asymmetric distributions. The average run length (ARL) can also be used to measure progress in the MA-MEWMA chart with Shewhart, MA, and MEWMA charts that employ Monte Carlo simulation. The experiments demonstrated that the proposed chart had a greater impact compared to all other control charts with the parameter level ±0.05, ±0.10, ±0.25, ±0.50, ±0.75, ±1.00, ±1.50 through discovering a change in the average of the method in the control where ARL0 = 370. On the other hand, when the parameter level was set to 2.00, ±3.00, ±4.00, the MA control chart performed admirably. An excellent example is data set on viscosity from a batch chemical process. Environmental information data were provided to explain how the suggested chart and MA-MEWMA charts are implemented, demonstrating that the MA-MEWMA chart was more successful than other charts in detecting changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
期刊最新文献
Nanostructured Composites: Modelling for Tailored Industrial Application Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1