偏斜分布的变阶统计排序集抽样

D. S. Bhoj, Girish Chandra
{"title":"偏斜分布的变阶统计排序集抽样","authors":"D. S. Bhoj, Girish Chandra","doi":"10.3233/mas-211334","DOIUrl":null,"url":null,"abstract":"Ranked Set Sampling (RSS) is a method of sampling that can be advantageous when quantification of all sampling units is costly but when small sets of units can be ranked according to the character under investigation by means of the methods not requiring actual measurements. The units corresponding to each rank are used in RSS and it performs better than simple random sampling (SRS) while estimating the population mean and other population parameters. In this paper, a new RSS procedure (RSSVO) for estimating the population mean of skew distributions is suggested. RSSVO measures only one or two order statistics depending upon the set size. The proposed estimator under RSSVO is then compared with the estimators based on SRS and RSS with equal allocation and Neyman’s optimal allocations. It is shown that the relative precisions of the estimators based on RSSVO are higher than those of the estimators based on SRS and RSS (both equal and Neyman’s optimal allocation) when the distributions under consideration are highly positive skew. Further, it is shown that, the performance of the proposed estimator increases as the skewness increases by using the example of lognormal distribution.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranked set sampling with varied order statistics for skew distributions\",\"authors\":\"D. S. Bhoj, Girish Chandra\",\"doi\":\"10.3233/mas-211334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ranked Set Sampling (RSS) is a method of sampling that can be advantageous when quantification of all sampling units is costly but when small sets of units can be ranked according to the character under investigation by means of the methods not requiring actual measurements. The units corresponding to each rank are used in RSS and it performs better than simple random sampling (SRS) while estimating the population mean and other population parameters. In this paper, a new RSS procedure (RSSVO) for estimating the population mean of skew distributions is suggested. RSSVO measures only one or two order statistics depending upon the set size. The proposed estimator under RSSVO is then compared with the estimators based on SRS and RSS with equal allocation and Neyman’s optimal allocations. It is shown that the relative precisions of the estimators based on RSSVO are higher than those of the estimators based on SRS and RSS (both equal and Neyman’s optimal allocation) when the distributions under consideration are highly positive skew. Further, it is shown that, the performance of the proposed estimator increases as the skewness increases by using the example of lognormal distribution.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-211334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-211334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

排序集采样(RSS)是一种采样方法,当所有采样单元的量化成本高昂时,但当可以通过不需要实际测量的方法根据所调查的特征对小单元集进行排序时,这种采样方法可能是有利的。在RSS中使用与每个秩相对应的单元,并且在估计总体平均值和其他总体参数时,它比简单随机采样(SRS)执行得更好。本文提出了一种新的估计偏斜分布总体均值的RSS方法(RSSVO)。RSSVO根据集合大小仅测量一个或两个订单统计信息。然后将所提出的RSSVO下的估计量与基于SRS和RSS的等分配和Neyman最优分配的估计量进行了比较。结果表明,当所考虑的分布是高度正偏斜时,基于RSSVO的估计量的相对精度高于基于SRS和RSS的估计量(均为相等和Neyman最优分配)。此外,通过使用对数正态分布的例子表明,所提出的估计器的性能随着偏度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ranked set sampling with varied order statistics for skew distributions
Ranked Set Sampling (RSS) is a method of sampling that can be advantageous when quantification of all sampling units is costly but when small sets of units can be ranked according to the character under investigation by means of the methods not requiring actual measurements. The units corresponding to each rank are used in RSS and it performs better than simple random sampling (SRS) while estimating the population mean and other population parameters. In this paper, a new RSS procedure (RSSVO) for estimating the population mean of skew distributions is suggested. RSSVO measures only one or two order statistics depending upon the set size. The proposed estimator under RSSVO is then compared with the estimators based on SRS and RSS with equal allocation and Neyman’s optimal allocations. It is shown that the relative precisions of the estimators based on RSSVO are higher than those of the estimators based on SRS and RSS (both equal and Neyman’s optimal allocation) when the distributions under consideration are highly positive skew. Further, it is shown that, the performance of the proposed estimator increases as the skewness increases by using the example of lognormal distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
期刊最新文献
Limitations of the propensity scores approach: A simulation study INAR(1) process with Poisson-transmuted record type exponential innovations Estimation of three-parameter Fréchet distribution for the number of days from drug administration to remission in small sample sizes Analysis of kidney infection data using correlated compound poisson frailty models Parametric analysis and model selection for economic evaluation of survival data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1