自主地面车辆模型预测控制研究综述

Shuyou Yu, Matthias Hirche, Yanjun Huang, Hong Chen, Frank Allgöwer
{"title":"自主地面车辆模型预测控制研究综述","authors":"Shuyou Yu,&nbsp;Matthias Hirche,&nbsp;Yanjun Huang,&nbsp;Hong Chen,&nbsp;Frank Allgöwer","doi":"10.1007/s43684-021-00005-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and communicate with each other and have their own controller onboard. This calls for distributed control solutions. First, a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing issues and future research directions, which will promote the development of MPC schemes with high performance in AGVs.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00005-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Model predictive control for autonomous ground vehicles: a review\",\"authors\":\"Shuyou Yu,&nbsp;Matthias Hirche,&nbsp;Yanjun Huang,&nbsp;Hong Chen,&nbsp;Frank Allgöwer\",\"doi\":\"10.1007/s43684-021-00005-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and communicate with each other and have their own controller onboard. This calls for distributed control solutions. First, a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing issues and future research directions, which will promote the development of MPC schemes with high performance in AGVs.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-021-00005-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-021-00005-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00005-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了模型预测控制(MPC)及其在单个和多个自主地面车辆(AGV)中的广泛应用。一方面,MPC 是一种行之有效的优化控制方法,它利用预测的未来信息来优化控制行动,同时明确考虑约束条件。另一方面,AGV 能够在不确定的环境中进行预测并调整其决策。因此,由于 MPC 的性质和 AGV 的要求,将 MPC 算法应用于 AGV 是非常直观的。AGV 的有趣之处不仅在于将其单独考虑(这需要集中控制方法),还在于将其作为 AGV 组来考虑,这些 AGV 可以相互影响、相互通信,并在车上安装各自的控制器。这就需要采用分布式控制解决方案。首先,简要介绍了集中式和分布式 MPC 的基本理论背景。然后,全面回顾了单个和多个 AGV 的 MPC 应用。最后,本文强调了现有问题和未来研究方向,这将促进 AGV 中高性能 MPC 方案的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model predictive control for autonomous ground vehicles: a review

This paper reviews model predictive control (MPC) and its wide applications to both single and multiple autonomous ground vehicles (AGVs). On one hand, MPC is a well-established optimal control method, which uses the predicted future information to optimize the control actions while explicitly considering constraints. On the other hand, AGVs are able to make forecasts and adapt their decisions in uncertain environments. Therefore, because of the nature of MPC and the requirements of AGVs, it is intuitive to apply MPC algorithms to AGVs. AGVs are interesting not only for considering them alone, which requires centralized control approaches, but also as groups of AGVs that interact and communicate with each other and have their own controller onboard. This calls for distributed control solutions. First, a short introduction into the basic theoretical background of centralized and distributed MPC is given. Then, it comprehensively reviews MPC applications for both single and multiple AGVs. Finally, the paper highlights existing issues and future research directions, which will promote the development of MPC schemes with high performance in AGVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1