Hanying Chen, P. Gao, S. Tan, Hongsheng Yuan, Mingxiang Guan
{"title":"基于LSTM和Dropout的核电厂非正常工况下自动紧急停堆预测","authors":"Hanying Chen, P. Gao, S. Tan, Hongsheng Yuan, Mingxiang Guan","doi":"10.1155/2023/2267376","DOIUrl":null,"url":null,"abstract":"A deep-learning model was proposed for predicting the remaining time to automatic scram during abnormal conditions of nuclear power plants (NPPs) based on long short-term memory (LSTM) and dropout. The proposed model was trained by simulated condition data of abnormal conditions; the input of the model was the deviation of the monitoring parameters from the normal operating state, and the output was the remaining time from the current moment to the upcoming reactor trip. The predicted remaining time to the reactor trip decreases with the development of abnormal conditions; thus, the output of the proposed model generates a predicted countdown to the reactor trip. The proposed prediction model showed better prediction performance than the Elman neural network model in the experiments but encountered an overfitting problem for testing data containing noise. Therefore, dropout was applied to further improve the generalization ability of the prediction model based on LSTM. The proposed automatic scram prediction model can provide NPP operators with an alert to the automatic scram during abnormal conditions.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Automatic Scram during Abnormal Conditions of Nuclear Power Plants Based on Long Short-Term Memory (LSTM) and Dropout\",\"authors\":\"Hanying Chen, P. Gao, S. Tan, Hongsheng Yuan, Mingxiang Guan\",\"doi\":\"10.1155/2023/2267376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep-learning model was proposed for predicting the remaining time to automatic scram during abnormal conditions of nuclear power plants (NPPs) based on long short-term memory (LSTM) and dropout. The proposed model was trained by simulated condition data of abnormal conditions; the input of the model was the deviation of the monitoring parameters from the normal operating state, and the output was the remaining time from the current moment to the upcoming reactor trip. The predicted remaining time to the reactor trip decreases with the development of abnormal conditions; thus, the output of the proposed model generates a predicted countdown to the reactor trip. The proposed prediction model showed better prediction performance than the Elman neural network model in the experiments but encountered an overfitting problem for testing data containing noise. Therefore, dropout was applied to further improve the generalization ability of the prediction model based on LSTM. The proposed automatic scram prediction model can provide NPP operators with an alert to the automatic scram during abnormal conditions.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2267376\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/2267376","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Prediction of Automatic Scram during Abnormal Conditions of Nuclear Power Plants Based on Long Short-Term Memory (LSTM) and Dropout
A deep-learning model was proposed for predicting the remaining time to automatic scram during abnormal conditions of nuclear power plants (NPPs) based on long short-term memory (LSTM) and dropout. The proposed model was trained by simulated condition data of abnormal conditions; the input of the model was the deviation of the monitoring parameters from the normal operating state, and the output was the remaining time from the current moment to the upcoming reactor trip. The predicted remaining time to the reactor trip decreases with the development of abnormal conditions; thus, the output of the proposed model generates a predicted countdown to the reactor trip. The proposed prediction model showed better prediction performance than the Elman neural network model in the experiments but encountered an overfitting problem for testing data containing noise. Therefore, dropout was applied to further improve the generalization ability of the prediction model based on LSTM. The proposed automatic scram prediction model can provide NPP operators with an alert to the automatic scram during abnormal conditions.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.