{"title":"具有不同连接和覆层的木质外墙:评估材料的可重复使用性、用水和全球变暖潜力","authors":"M. Juaristi, Ilaria Sebastiani, S. Avesani","doi":"10.47982/jfde.2022.powerskin.5","DOIUrl":null,"url":null,"abstract":"Timber-based façade technologies have the potential to effectively reduce the carbon footprint, reduce water use in construction, and minimize waste, when their manufacturing process is highly prefabricated. Additionally, avoiding glue parts can enhance the sustainability of the façade as its elements can be replaced (extending the durability of façades and therefore buildings) and separated once that they reach their end of life (to re-use or recycle them). Thus, the connection between materials might have a considerable impact on the façade’s sustainability. Moreover, timber-based façades can have different claddings, impacting on the water needed for the technology and their Global Warming Potential (GWP). This paper assesses, through a novel methodological approach, materials’ reusability, water use, and GWP for different façade connections and claddings. Four prototypes with different connections (staples, screws, timber nails, and geometrical assembly) were built. Experimental activities representing façade elements’ substitution and disassembly provided qualitative and quantitative information about production, extraordinary maintenance, and end-of-life phases. Through these tests, the quantity of material that could be re-used and disposed in such phases was quantified and then inserted in a Life Cycle Analysis (LCA). LCA was conducted using EF v.3.0 impact method and components were modelled with EPD information and Ecoinvent cut-off 3.7 database. According to the results, a timber-based façade with timber nails and wood cladding is the most promising of reusable façade materials, decreasing the water use and GWP.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timber-based Façades with Different Connections and Claddings: Assessing Materials’ Reusability, Water Use and Global Warming Potential\",\"authors\":\"M. Juaristi, Ilaria Sebastiani, S. Avesani\",\"doi\":\"10.47982/jfde.2022.powerskin.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timber-based façade technologies have the potential to effectively reduce the carbon footprint, reduce water use in construction, and minimize waste, when their manufacturing process is highly prefabricated. Additionally, avoiding glue parts can enhance the sustainability of the façade as its elements can be replaced (extending the durability of façades and therefore buildings) and separated once that they reach their end of life (to re-use or recycle them). Thus, the connection between materials might have a considerable impact on the façade’s sustainability. Moreover, timber-based façades can have different claddings, impacting on the water needed for the technology and their Global Warming Potential (GWP). This paper assesses, through a novel methodological approach, materials’ reusability, water use, and GWP for different façade connections and claddings. Four prototypes with different connections (staples, screws, timber nails, and geometrical assembly) were built. Experimental activities representing façade elements’ substitution and disassembly provided qualitative and quantitative information about production, extraordinary maintenance, and end-of-life phases. Through these tests, the quantity of material that could be re-used and disposed in such phases was quantified and then inserted in a Life Cycle Analysis (LCA). LCA was conducted using EF v.3.0 impact method and components were modelled with EPD information and Ecoinvent cut-off 3.7 database. According to the results, a timber-based façade with timber nails and wood cladding is the most promising of reusable façade materials, decreasing the water use and GWP.\",\"PeriodicalId\":37451,\"journal\":{\"name\":\"Journal of Facade Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Facade Design and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/jfde.2022.powerskin.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Facade Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/jfde.2022.powerskin.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Timber-based Façades with Different Connections and Claddings: Assessing Materials’ Reusability, Water Use and Global Warming Potential
Timber-based façade technologies have the potential to effectively reduce the carbon footprint, reduce water use in construction, and minimize waste, when their manufacturing process is highly prefabricated. Additionally, avoiding glue parts can enhance the sustainability of the façade as its elements can be replaced (extending the durability of façades and therefore buildings) and separated once that they reach their end of life (to re-use or recycle them). Thus, the connection between materials might have a considerable impact on the façade’s sustainability. Moreover, timber-based façades can have different claddings, impacting on the water needed for the technology and their Global Warming Potential (GWP). This paper assesses, through a novel methodological approach, materials’ reusability, water use, and GWP for different façade connections and claddings. Four prototypes with different connections (staples, screws, timber nails, and geometrical assembly) were built. Experimental activities representing façade elements’ substitution and disassembly provided qualitative and quantitative information about production, extraordinary maintenance, and end-of-life phases. Through these tests, the quantity of material that could be re-used and disposed in such phases was quantified and then inserted in a Life Cycle Analysis (LCA). LCA was conducted using EF v.3.0 impact method and components were modelled with EPD information and Ecoinvent cut-off 3.7 database. According to the results, a timber-based façade with timber nails and wood cladding is the most promising of reusable façade materials, decreasing the water use and GWP.
期刊介绍:
The Journal of Facade Design and Engineering presents new research results and new proven practice in the field of facade design and engineering. The goal is to improve building technologies, as well as process management and architectural design. This journal is a valuable resource for professionals and academics involved in the design and engineering of building envelopes, including the following disciplines: Architecture Façade Engineering Climate Design Building Services Integration Building Physics Façade Design and Construction Management Novel Material Applications. The journal will be directed at the scientific community, but it will also feature papers that focus on the dissemination of science into practice and industrial innovations. In this way, readers explore the interaction between scientific developments, technical considerations and management issues.