碳酸盐湖沉积物作为聚合物复合材料潜在填料的特性

IF 3.8 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY Green Processing and Synthesis Pub Date : 2023-01-01 DOI:10.1515/gps-2022-8082
Grzegorz Borkowski, A. Martyla, Marta Dobrosielska, P. Marciniak, Julia Głowacka, Daria Pakuła, E. Gabriel, R. Przekop
{"title":"碳酸盐湖沉积物作为聚合物复合材料潜在填料的特性","authors":"Grzegorz Borkowski, A. Martyla, Marta Dobrosielska, P. Marciniak, Julia Głowacka, Daria Pakuła, E. Gabriel, R. Przekop","doi":"10.1515/gps-2022-8082","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of the study was to determine whether lake sediments could be a potential raw material for the plastics industry. The examined samples were obtained in a complex process of sediment collection from Lake Swarzędzkie located in the region of Wielkopolska, Poland, followed by granulometric analysis by sieving and quartz grain shape analysis, with preparation of geotechnical sheets. The works involved the examination of physico-chemical characteristics of carbonate lake sediments and the analysis of impact of the sediments’ depth extraction on their chemical composition and physico-chemical properties. The lake sediment consists mainly of calcium carbonate (CaCO3) and can be a potential filler for plastics. Tests were carried out to determine chemical composition of the sediments and their thermal stability. The thermogravimetric analysis showed the three stages of the thermal decomposition. Sediments in deeper layers of the lake are characterised by the presence of not only CaCO3 and silica, but also other chemical compounds, including aluminosilicates. In addition, as the depth increases, the average size of sediment particles changes, with the main fraction particle size being the smallest for the material from the 6–12 m depth. Additionally, carbon content systematically decreases with increasing depth.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterisation of carbonate lake sediments as a potential filler for polymer composites\",\"authors\":\"Grzegorz Borkowski, A. Martyla, Marta Dobrosielska, P. Marciniak, Julia Głowacka, Daria Pakuła, E. Gabriel, R. Przekop\",\"doi\":\"10.1515/gps-2022-8082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of the study was to determine whether lake sediments could be a potential raw material for the plastics industry. The examined samples were obtained in a complex process of sediment collection from Lake Swarzędzkie located in the region of Wielkopolska, Poland, followed by granulometric analysis by sieving and quartz grain shape analysis, with preparation of geotechnical sheets. The works involved the examination of physico-chemical characteristics of carbonate lake sediments and the analysis of impact of the sediments’ depth extraction on their chemical composition and physico-chemical properties. The lake sediment consists mainly of calcium carbonate (CaCO3) and can be a potential filler for plastics. Tests were carried out to determine chemical composition of the sediments and their thermal stability. The thermogravimetric analysis showed the three stages of the thermal decomposition. Sediments in deeper layers of the lake are characterised by the presence of not only CaCO3 and silica, but also other chemical compounds, including aluminosilicates. In addition, as the depth increases, the average size of sediment particles changes, with the main fraction particle size being the smallest for the material from the 6–12 m depth. Additionally, carbon content systematically decreases with increasing depth.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8082\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究的目的是确定湖泊沉积物是否可能成为塑料工业的潜在原料。所检查的样品是在波兰维尔科波尔斯卡地区SwarzÉdzkie湖沉积物采集的复杂过程中获得的,随后通过筛分和石英颗粒形状分析进行粒度分析,并制备岩土工程图纸。这些工作包括检查碳酸盐湖沉积物的物理化学特征,并分析沉积物的深度提取对其化学成分和物理化学性质的影响。湖泊沉积物主要由碳酸钙(CaCO3)组成,可以作为塑料的潜在填料。进行了测试,以确定沉积物的化学成分及其热稳定性。热重分析显示了热分解的三个阶段。湖泊深层沉积物的特征不仅是存在CaCO3和二氧化硅,还存在其他化合物,包括铝硅酸盐。此外,随着深度的增加,沉积物颗粒的平均尺寸也发生了变化,6-12层的主要颗粒尺寸最小 m深度。此外,碳含量随着深度的增加而系统地降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterisation of carbonate lake sediments as a potential filler for polymer composites
Abstract The purpose of the study was to determine whether lake sediments could be a potential raw material for the plastics industry. The examined samples were obtained in a complex process of sediment collection from Lake Swarzędzkie located in the region of Wielkopolska, Poland, followed by granulometric analysis by sieving and quartz grain shape analysis, with preparation of geotechnical sheets. The works involved the examination of physico-chemical characteristics of carbonate lake sediments and the analysis of impact of the sediments’ depth extraction on their chemical composition and physico-chemical properties. The lake sediment consists mainly of calcium carbonate (CaCO3) and can be a potential filler for plastics. Tests were carried out to determine chemical composition of the sediments and their thermal stability. The thermogravimetric analysis showed the three stages of the thermal decomposition. Sediments in deeper layers of the lake are characterised by the presence of not only CaCO3 and silica, but also other chemical compounds, including aluminosilicates. In addition, as the depth increases, the average size of sediment particles changes, with the main fraction particle size being the smallest for the material from the 6–12 m depth. Additionally, carbon content systematically decreases with increasing depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Processing and Synthesis
Green Processing and Synthesis CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
6.70
自引率
9.30%
发文量
78
审稿时长
7 weeks
期刊介绍: Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.
期刊最新文献
Electrochemical analysis of copper-EDTA-ammonia-gold thiosulfate dissolution system Effect of phytogenic iron nanoparticles on the bio-fortification of wheat varieties Nanoscale molecular reactions in microbiological medicines in modern medical applications A study on the larvicidal and adulticidal potential of Cladostepus spongiosus macroalgae and green-fabricated silver nanoparticles against mosquito vectors Micro-impact-induced mechano-chemical synthesis of organic precursors from FeC/FeN and carbonates/nitrates in water and its extension to nucleobases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1