挖掘最优策略:一种用于模型分析的模式识别方法

Fernanda Bravo, Yaron Shaposhnik
{"title":"挖掘最优策略:一种用于模型分析的模式识别方法","authors":"Fernanda Bravo, Yaron Shaposhnik","doi":"10.2139/SSRN.3069690","DOIUrl":null,"url":null,"abstract":"This project spawned from an admission control problem we were working on for a major hospital in the Boston area. We tried to incorporate various aspects of the problem in a model, which resulted in a complex optimization problem that was difficult to solve analytically. Although numerical solutions could be computed, we were looking for insights to characterize simple policies that could be used in practice. We then came up with the idea of using machine learning to analyze solutions as a mean for obtaining such insights, an idea we thought could be interesting by itself. The motivating problem is an ongoing separate work.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Mining Optimal Policies: A Pattern Recognition Approach to Model Analysis\",\"authors\":\"Fernanda Bravo, Yaron Shaposhnik\",\"doi\":\"10.2139/SSRN.3069690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project spawned from an admission control problem we were working on for a major hospital in the Boston area. We tried to incorporate various aspects of the problem in a model, which resulted in a complex optimization problem that was difficult to solve analytically. Although numerical solutions could be computed, we were looking for insights to characterize simple policies that could be used in practice. We then came up with the idea of using machine learning to analyze solutions as a mean for obtaining such insights, an idea we thought could be interesting by itself. The motivating problem is an ongoing separate work.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.3069690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.3069690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

这个项目源于我们为波士顿地区一家大型医院处理的入院控制问题。我们试图将问题的各个方面纳入一个模型中,这导致了一个难以解析求解的复杂优化问题。尽管可以计算数值解,但我们正在寻找可以在实践中使用的简单策略的特征。然后,我们提出了使用机器学习来分析解决方案的想法,作为获得这些见解的一种手段,我们认为这个想法本身可能很有趣。激励问题是一项正在进行的单独工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Optimal Policies: A Pattern Recognition Approach to Model Analysis
This project spawned from an admission control problem we were working on for a major hospital in the Boston area. We tried to incorporate various aspects of the problem in a model, which resulted in a complex optimization problem that was difficult to solve analytically. Although numerical solutions could be computed, we were looking for insights to characterize simple policies that could be used in practice. We then came up with the idea of using machine learning to analyze solutions as a mean for obtaining such insights, an idea we thought could be interesting by itself. The motivating problem is an ongoing separate work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1