{"title":"评估Mask R‐CNN模型以提取大洋高岛上的阶地:来自Sāmoa的案例研究","authors":"Seth Quintus, Dylan S. Davis, Ethan E. Cochrane","doi":"10.1002/arp.1909","DOIUrl":null,"url":null,"abstract":"<p>Lidar datasets have been crucial for documenting the scale and nature of human ecosystem engineering and land use. Automated analysis methods, which have been rising in popularity and efficiency, allow for systematic evaluations of vast landscapes. Here, we use a Mask R-CNN deep learning model to evaluate terracing—artificially flattened areas surrounded by steeper slopes—on islands in American Sāmoa. Mask R-CNN is notable for its ability to simultaneously perform detection and segmentation tasks related to object recognition, thereby providing robust datasets of both geographic locations of terracing features and their spatial morphometry. Using training datasets from across American Sāmoa, we train this model to recognize terracing features and then apply it to the island of Tutuila to undertake an island-wide survey for terrace locations, distributions and morphologies. We demonstrate that this model is effective (F1 = 0.718), but limitations are also documented that relate to the quality of the lidar data and the size of terracing features. Our data show that the islands of American Sāmoa display shared patterns of terracing, but the nature of these patterns are distinct on Tutuila compared with the Manu'a island group. These patterns speak to the different interior configurations of the islands. This study demonstrates how deep learning provides a better understanding of landscape construction and behavioural patterning on Tutuila and has the capacity to expand our understanding of these processes on other islands beyond our case study.</p>","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":"30 4","pages":"477-492"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Mask R-CNN models to extract terracing across oceanic high islands: A case study from Sāmoa\",\"authors\":\"Seth Quintus, Dylan S. Davis, Ethan E. Cochrane\",\"doi\":\"10.1002/arp.1909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lidar datasets have been crucial for documenting the scale and nature of human ecosystem engineering and land use. Automated analysis methods, which have been rising in popularity and efficiency, allow for systematic evaluations of vast landscapes. Here, we use a Mask R-CNN deep learning model to evaluate terracing—artificially flattened areas surrounded by steeper slopes—on islands in American Sāmoa. Mask R-CNN is notable for its ability to simultaneously perform detection and segmentation tasks related to object recognition, thereby providing robust datasets of both geographic locations of terracing features and their spatial morphometry. Using training datasets from across American Sāmoa, we train this model to recognize terracing features and then apply it to the island of Tutuila to undertake an island-wide survey for terrace locations, distributions and morphologies. We demonstrate that this model is effective (F1 = 0.718), but limitations are also documented that relate to the quality of the lidar data and the size of terracing features. Our data show that the islands of American Sāmoa display shared patterns of terracing, but the nature of these patterns are distinct on Tutuila compared with the Manu'a island group. These patterns speak to the different interior configurations of the islands. This study demonstrates how deep learning provides a better understanding of landscape construction and behavioural patterning on Tutuila and has the capacity to expand our understanding of these processes on other islands beyond our case study.</p>\",\"PeriodicalId\":55490,\"journal\":{\"name\":\"Archaeological Prospection\",\"volume\":\"30 4\",\"pages\":\"477-492\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaeological Prospection\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arp.1909\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arp.1909","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
Evaluating Mask R-CNN models to extract terracing across oceanic high islands: A case study from Sāmoa
Lidar datasets have been crucial for documenting the scale and nature of human ecosystem engineering and land use. Automated analysis methods, which have been rising in popularity and efficiency, allow for systematic evaluations of vast landscapes. Here, we use a Mask R-CNN deep learning model to evaluate terracing—artificially flattened areas surrounded by steeper slopes—on islands in American Sāmoa. Mask R-CNN is notable for its ability to simultaneously perform detection and segmentation tasks related to object recognition, thereby providing robust datasets of both geographic locations of terracing features and their spatial morphometry. Using training datasets from across American Sāmoa, we train this model to recognize terracing features and then apply it to the island of Tutuila to undertake an island-wide survey for terrace locations, distributions and morphologies. We demonstrate that this model is effective (F1 = 0.718), but limitations are also documented that relate to the quality of the lidar data and the size of terracing features. Our data show that the islands of American Sāmoa display shared patterns of terracing, but the nature of these patterns are distinct on Tutuila compared with the Manu'a island group. These patterns speak to the different interior configurations of the islands. This study demonstrates how deep learning provides a better understanding of landscape construction and behavioural patterning on Tutuila and has the capacity to expand our understanding of these processes on other islands beyond our case study.
期刊介绍:
The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology.
The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed.
Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps.
Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged.
The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies.
The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation.
All papers will be subjected to peer review.