{"title":"纳米氧化锌在酯化碳酸化Sago Hampas上的吸附动力学和平衡研究","authors":"E. K. Droepenu, B. S. Wee, S. Chin, E. Asare","doi":"10.22068/IJMSE.17.4.152","DOIUrl":null,"url":null,"abstract":": Sago hampas was chemically modified through esterification to adsorb both laboratory and commercial synthesized Zinc oxide nanoparticles from water in a batch adsorption studies. The esterified sago hampas (ECSH) as a bio-sorbent was characterized using Energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) technique. Investigating the effect of pH, contact time, initial sorbate ion concentration, temperature and sorbent mass were carried out where adsorption parameters were analyzed using Langmuir, Freundlich and Temkin models. The correlation between Kinetics of adsorption and the rate order of Zinc oxide nanoparticles on ECSH were also determined. The adsorption of Zinc oxide nanoparticles was found to increase with increasing contact time with the attainment of equilibrium at 100 th minute with maximum removal efficiency of 85.5% (0.036 mg/g) and 89.6% (0.106 mg/g) for laboratory and commercial synthesized Zinc oxide nanoparticles from aqueous solution. An optimum pH of 8 with adsorbent dose of 2.0 g at a temperature of 50°C gave good results of Zinc oxide nanoparticles removal. The equilibrium data for both sorbate solutions fitted well for both Langmuir and Freundlich isotherm models. From the Langmuir model, ECSH recorded greater sorption capacity of 0.2 mg/g and 0.6 mg/g for laboratory and commercial synthesized Zinc oxide nanoparticles respectively. The kinetic studies showed pseudo-second order model as the best fitted for the sorption of Zinc oxide nanoparticles for both laboratory and commercial Zinc oxide nanoparticles.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adsorption of Zinc Oxide Nanoparticles onto Esterified Carbonize Sago Hampas: Kinetic and Equilibrium Studies\",\"authors\":\"E. K. Droepenu, B. S. Wee, S. Chin, E. Asare\",\"doi\":\"10.22068/IJMSE.17.4.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Sago hampas was chemically modified through esterification to adsorb both laboratory and commercial synthesized Zinc oxide nanoparticles from water in a batch adsorption studies. The esterified sago hampas (ECSH) as a bio-sorbent was characterized using Energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) technique. Investigating the effect of pH, contact time, initial sorbate ion concentration, temperature and sorbent mass were carried out where adsorption parameters were analyzed using Langmuir, Freundlich and Temkin models. The correlation between Kinetics of adsorption and the rate order of Zinc oxide nanoparticles on ECSH were also determined. The adsorption of Zinc oxide nanoparticles was found to increase with increasing contact time with the attainment of equilibrium at 100 th minute with maximum removal efficiency of 85.5% (0.036 mg/g) and 89.6% (0.106 mg/g) for laboratory and commercial synthesized Zinc oxide nanoparticles from aqueous solution. An optimum pH of 8 with adsorbent dose of 2.0 g at a temperature of 50°C gave good results of Zinc oxide nanoparticles removal. The equilibrium data for both sorbate solutions fitted well for both Langmuir and Freundlich isotherm models. From the Langmuir model, ECSH recorded greater sorption capacity of 0.2 mg/g and 0.6 mg/g for laboratory and commercial synthesized Zinc oxide nanoparticles respectively. The kinetic studies showed pseudo-second order model as the best fitted for the sorption of Zinc oxide nanoparticles for both laboratory and commercial Zinc oxide nanoparticles.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.17.4.152\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.17.4.152","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorption of Zinc Oxide Nanoparticles onto Esterified Carbonize Sago Hampas: Kinetic and Equilibrium Studies
: Sago hampas was chemically modified through esterification to adsorb both laboratory and commercial synthesized Zinc oxide nanoparticles from water in a batch adsorption studies. The esterified sago hampas (ECSH) as a bio-sorbent was characterized using Energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) technique. Investigating the effect of pH, contact time, initial sorbate ion concentration, temperature and sorbent mass were carried out where adsorption parameters were analyzed using Langmuir, Freundlich and Temkin models. The correlation between Kinetics of adsorption and the rate order of Zinc oxide nanoparticles on ECSH were also determined. The adsorption of Zinc oxide nanoparticles was found to increase with increasing contact time with the attainment of equilibrium at 100 th minute with maximum removal efficiency of 85.5% (0.036 mg/g) and 89.6% (0.106 mg/g) for laboratory and commercial synthesized Zinc oxide nanoparticles from aqueous solution. An optimum pH of 8 with adsorbent dose of 2.0 g at a temperature of 50°C gave good results of Zinc oxide nanoparticles removal. The equilibrium data for both sorbate solutions fitted well for both Langmuir and Freundlich isotherm models. From the Langmuir model, ECSH recorded greater sorption capacity of 0.2 mg/g and 0.6 mg/g for laboratory and commercial synthesized Zinc oxide nanoparticles respectively. The kinetic studies showed pseudo-second order model as the best fitted for the sorption of Zinc oxide nanoparticles for both laboratory and commercial Zinc oxide nanoparticles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.