波动率预测的机器学习方法

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2022-06-21 DOI:10.1093/jjfinec/nbac020
Kim Christensen, Mathias Siggaard, Bezirgen Veliyev
{"title":"波动率预测的机器学习方法","authors":"Kim Christensen, Mathias Siggaard, Bezirgen Veliyev","doi":"10.1093/jjfinec/nbac020","DOIUrl":null,"url":null,"abstract":"\n We inspect how accurate machine learning (ML) is at forecasting realized variance of the Dow Jones Industrial Average index constituents. We compare several ML algorithms, including regularization, regression trees, and neural networks, to multiple heterogeneous autoregressive (HAR) models. ML is implemented with minimal hyperparameter tuning. In spite of this, ML is competitive and beats the HAR lineage, even when the only predictors are the daily, weekly, and monthly lags of realized variance. The forecast gains are more pronounced at longer horizons. We attribute this to higher persistence in the ML models, which helps to approximate the long memory of realized variance. ML also excels at locating incremental information about future volatility from additional predictors. Lastly, we propose an ML measure of variable importance based on accumulated local effects. This shows that while there is agreement about the most important predictors, there is disagreement on their ranking, helping to reconcile our results.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A Machine Learning Approach to Volatility Forecasting\",\"authors\":\"Kim Christensen, Mathias Siggaard, Bezirgen Veliyev\",\"doi\":\"10.1093/jjfinec/nbac020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We inspect how accurate machine learning (ML) is at forecasting realized variance of the Dow Jones Industrial Average index constituents. We compare several ML algorithms, including regularization, regression trees, and neural networks, to multiple heterogeneous autoregressive (HAR) models. ML is implemented with minimal hyperparameter tuning. In spite of this, ML is competitive and beats the HAR lineage, even when the only predictors are the daily, weekly, and monthly lags of realized variance. The forecast gains are more pronounced at longer horizons. We attribute this to higher persistence in the ML models, which helps to approximate the long memory of realized variance. ML also excels at locating incremental information about future volatility from additional predictors. Lastly, we propose an ML measure of variable importance based on accumulated local effects. This shows that while there is agreement about the most important predictors, there is disagreement on their ranking, helping to reconcile our results.\",\"PeriodicalId\":47596,\"journal\":{\"name\":\"Journal of Financial Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/jjfinec/nbac020\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbac020","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 34

摘要

我们考察了机器学习(ML)在预测道琼斯工业平均指数成分的实际方差方面的准确性。我们将几种ML算法(包括正则化、回归树和神经网络)与多个异构自回归(HAR)模型进行了比较。ML是用最小的超参数调整来实现的。尽管如此,ML是有竞争力的,并且击败了HAR谱系,即使唯一的预测因素是实现方差的每日、每周和每月滞后。预测收益在长期内更加明显。我们将此归因于ML模型中更高的持久性,这有助于近似已实现方差的长记忆。ML还擅长从其他预测因素中定位有关未来波动性的增量信息。最后,我们提出了一个基于累积局部效应的变量重要性的ML度量。这表明,虽然对最重要的预测因素达成了一致,但对它们的排名却存在分歧,这有助于调和我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach to Volatility Forecasting
We inspect how accurate machine learning (ML) is at forecasting realized variance of the Dow Jones Industrial Average index constituents. We compare several ML algorithms, including regularization, regression trees, and neural networks, to multiple heterogeneous autoregressive (HAR) models. ML is implemented with minimal hyperparameter tuning. In spite of this, ML is competitive and beats the HAR lineage, even when the only predictors are the daily, weekly, and monthly lags of realized variance. The forecast gains are more pronounced at longer horizons. We attribute this to higher persistence in the ML models, which helps to approximate the long memory of realized variance. ML also excels at locating incremental information about future volatility from additional predictors. Lastly, we propose an ML measure of variable importance based on accumulated local effects. This shows that while there is agreement about the most important predictors, there is disagreement on their ranking, helping to reconcile our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1