基于人工智能的在线社交网络垃圾邮件检测技术:挑战与机遇

A. A. Abdo, Khaznah Alhajri, Assail Alyami, Aljazi Alkhalaf, Bashayer Allail, Esra Alyami, Hind Baaqeel
{"title":"基于人工智能的在线社交网络垃圾邮件检测技术:挑战与机遇","authors":"A. A. Abdo, Khaznah Alhajri, Assail Alyami, Aljazi Alkhalaf, Bashayer Allail, Esra Alyami, Hind Baaqeel","doi":"10.58346/jisis.2023.i3.006","DOIUrl":null,"url":null,"abstract":"In recent years, online social networks (OSNs) have become a huge used platform for sharing activities, opinions, and advertisements. Spam content is considered one of the biggest threats in social networks. Spammers exploit OSNs for falsifying content as part of phishing, such as sharing forged advertisements, selling forged products, or sharing sexual words. Therefore, machine learning (ML) and deep learning (DL) techniques are the best methods for detecting phishing attacks and minimize their risk. This paper provides an overview of prior studies of OSNs spam detection modeling based on ML and DL techniques. The research papers are classified into three categories: the features used for prediction, the dataset size corresponding language used, real-time based applications, and machine learning or deep learning techniques. Challenges and opportunities in phishing attacks prediction using ML and DL techniques are also concluded in our study.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based Spam Detection Techniques for Online Social Networks: Challenges and Opportunities\",\"authors\":\"A. A. Abdo, Khaznah Alhajri, Assail Alyami, Aljazi Alkhalaf, Bashayer Allail, Esra Alyami, Hind Baaqeel\",\"doi\":\"10.58346/jisis.2023.i3.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, online social networks (OSNs) have become a huge used platform for sharing activities, opinions, and advertisements. Spam content is considered one of the biggest threats in social networks. Spammers exploit OSNs for falsifying content as part of phishing, such as sharing forged advertisements, selling forged products, or sharing sexual words. Therefore, machine learning (ML) and deep learning (DL) techniques are the best methods for detecting phishing attacks and minimize their risk. This paper provides an overview of prior studies of OSNs spam detection modeling based on ML and DL techniques. The research papers are classified into three categories: the features used for prediction, the dataset size corresponding language used, real-time based applications, and machine learning or deep learning techniques. Challenges and opportunities in phishing attacks prediction using ML and DL techniques are also concluded in our study.\",\"PeriodicalId\":36718,\"journal\":{\"name\":\"Journal of Internet Services and Information Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58346/jisis.2023.i3.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2023.i3.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在线社交网络(OSN)已成为一个巨大的共享活动、意见和广告的平台。垃圾邮件内容被认为是社交网络中最大的威胁之一。垃圾邮件发送者利用OSN伪造内容,作为网络钓鱼的一部分,例如分享伪造的广告、销售伪造的产品或分享性话语。因此,机器学习(ML)和深度学习(DL)技术是检测网络钓鱼攻击并将其风险降至最低的最佳方法。本文概述了基于ML和DL技术的OSNs垃圾邮件检测建模的研究进展。研究论文分为三类:用于预测的特征、使用的数据集大小对应的语言、基于实时的应用程序以及机器学习或深度学习技术。我们的研究还总结了使用ML和DL技术预测网络钓鱼攻击的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-based Spam Detection Techniques for Online Social Networks: Challenges and Opportunities
In recent years, online social networks (OSNs) have become a huge used platform for sharing activities, opinions, and advertisements. Spam content is considered one of the biggest threats in social networks. Spammers exploit OSNs for falsifying content as part of phishing, such as sharing forged advertisements, selling forged products, or sharing sexual words. Therefore, machine learning (ML) and deep learning (DL) techniques are the best methods for detecting phishing attacks and minimize their risk. This paper provides an overview of prior studies of OSNs spam detection modeling based on ML and DL techniques. The research papers are classified into three categories: the features used for prediction, the dataset size corresponding language used, real-time based applications, and machine learning or deep learning techniques. Challenges and opportunities in phishing attacks prediction using ML and DL techniques are also concluded in our study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Evaluating the Effectiveness of a Gan Fingerprint Removal Approach in Fooling Deepfake Face Detection CSA-Forecaster: Stacked Model for Forecasting Child Sexual Abuse A Nonredundant SVD-based Precoding Matrix for Blind Channel Estimation in CP-OFDM Systems Over Channels with Memory An Intelligent Health Surveillance System: Predictive Modeling of Cardiovascular Parameters through Machine Learning Algorithms Using LoRa Communication and Internet of Medical Things (IoMT) Identifying Large Young Hacker Concentration in Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1