{"title":"调度松弛Jacobi方法在几何多级设置中的性能。I.线性情况","authors":"E. Bentivegna","doi":"10.1088/2633-1357/abd8e3","DOIUrl":null,"url":null,"abstract":"I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the Scheduled Relaxation Jacobi method in a geometric multilevel setting. I. Linear case\",\"authors\":\"E. Bentivegna\",\"doi\":\"10.1088/2633-1357/abd8e3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.\",\"PeriodicalId\":93771,\"journal\":{\"name\":\"IOP SciNotes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP SciNotes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-1357/abd8e3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abd8e3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of the Scheduled Relaxation Jacobi method in a geometric multilevel setting. I. Linear case
I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.