调度松弛Jacobi方法在几何多级设置中的性能。I.线性情况

E. Bentivegna
{"title":"调度松弛Jacobi方法在几何多级设置中的性能。I.线性情况","authors":"E. Bentivegna","doi":"10.1088/2633-1357/abd8e3","DOIUrl":null,"url":null,"abstract":"I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the Scheduled Relaxation Jacobi method in a geometric multilevel setting. I. Linear case\",\"authors\":\"E. Bentivegna\",\"doi\":\"10.1088/2633-1357/abd8e3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.\",\"PeriodicalId\":93771,\"journal\":{\"name\":\"IOP SciNotes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP SciNotes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-1357/abd8e3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abd8e3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我研究了调度松弛Jacobi方法作为几何多级(ML)求解器中的平滑器的适用性。它在线性椭圆方程求解中的性能是基于两个指标来衡量的:绝对性能(通过固定迭代次数中的残差减少来衡量)和并行可扩展性。我讨论了对该混合方案对解迭代的影响的理论期望,特别是对解的误差的期望,并对其进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of the Scheduled Relaxation Jacobi method in a geometric multilevel setting. I. Linear case
I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Morphology exploration of pollen using deep learning latent space The infection and recovery periods of the 2022 outbreak of monkey-pox virus disease Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR) testbed Genome analysis of a plastisphere-associated Oceanimonas sp. NSJ1 sequenced on Nanopore MinION platform Prediction of malignant transformation in oral epithelial dysplasia using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1