Shakil Ahmed Polash , Amir Hamza , Md. Monir Hossain , Chaitali Dekiwadia , Tanushree Saha , Ravi Shukla , Vipul Bansal , Satya Ranjan Sarker
{"title":"乳铁蛋白功能化凹立方体Au纳米粒子作为生物相容性抗菌剂","authors":"Shakil Ahmed Polash , Amir Hamza , Md. Monir Hossain , Chaitali Dekiwadia , Tanushree Saha , Ravi Shukla , Vipul Bansal , Satya Ranjan Sarker","doi":"10.1016/j.onano.2023.100163","DOIUrl":null,"url":null,"abstract":"<div><p>Gold nanoparticles (AuNPs) are one of the most extensively studied nanomaterials and their distinct physicochemical properties make them suitable for versatile applications. Herein, we synthesized concave cube-shaped gold nanoparticles (CCAuNPs) and functionalized them with lactoferrin (Lf), a natural antimicrobial protein, through electrostatic interaction as well as weak covalent formation. The functionalization of CCAuNPs was confirmed through UV–Visible (<em>i.e.</em>, bathochromic shift of the surface plasmon resonance peak by 7 nm), Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy, and their surface zeta potential. The concave cusp of CCAuNPs was confirmed through atomic force microscopy (AFM). The Lf-functionalized CCAuNPs (Lf-CCAuNPs) exhibited superior antibacterial propensity against a series of bacteria when compared to that of CCAuNPs. However, they didn't demonstrate any antibacterial activity against <em>Lactobacillus plantarum</em>, one of the key beneficial gut bacteria. The lipid peroxidation (LPO) assay confirmed the oxidation of fatty acids in the bacterial membrane upon interaction with AuNPs, which made the bacterial membrane porous. The resultant membrane-impaired dead bacteria were visualized through CellTox™ Green assay as well as the Trypan Blue dye exclusion assay. Both the nanoparticles demonstrated excellent hemocompatibility as well as biocompatibility (both <em>in vitro</em> and <em>in vivo</em>) as confirmed by MTT assay and the levels of important functional biomarkers of liver (<em>e.g.</em>, ALT, AST, and ALP) and kidney (<em>e.g.</em>, creatinine, uric acid, and BUN) in the serum. Overall, Lf-CCAuNPs with excellent hemocompatibility, and biocompatibility can be deployed as potential antibacterial agents to tackle the menace of pathogenic bacteria.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"12 ","pages":"Article 100163"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactoferrin functionalized concave cube Au nanoparticles as biocompatible antibacterial agent\",\"authors\":\"Shakil Ahmed Polash , Amir Hamza , Md. Monir Hossain , Chaitali Dekiwadia , Tanushree Saha , Ravi Shukla , Vipul Bansal , Satya Ranjan Sarker\",\"doi\":\"10.1016/j.onano.2023.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gold nanoparticles (AuNPs) are one of the most extensively studied nanomaterials and their distinct physicochemical properties make them suitable for versatile applications. Herein, we synthesized concave cube-shaped gold nanoparticles (CCAuNPs) and functionalized them with lactoferrin (Lf), a natural antimicrobial protein, through electrostatic interaction as well as weak covalent formation. The functionalization of CCAuNPs was confirmed through UV–Visible (<em>i.e.</em>, bathochromic shift of the surface plasmon resonance peak by 7 nm), Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy, and their surface zeta potential. The concave cusp of CCAuNPs was confirmed through atomic force microscopy (AFM). The Lf-functionalized CCAuNPs (Lf-CCAuNPs) exhibited superior antibacterial propensity against a series of bacteria when compared to that of CCAuNPs. However, they didn't demonstrate any antibacterial activity against <em>Lactobacillus plantarum</em>, one of the key beneficial gut bacteria. The lipid peroxidation (LPO) assay confirmed the oxidation of fatty acids in the bacterial membrane upon interaction with AuNPs, which made the bacterial membrane porous. The resultant membrane-impaired dead bacteria were visualized through CellTox™ Green assay as well as the Trypan Blue dye exclusion assay. Both the nanoparticles demonstrated excellent hemocompatibility as well as biocompatibility (both <em>in vitro</em> and <em>in vivo</em>) as confirmed by MTT assay and the levels of important functional biomarkers of liver (<em>e.g.</em>, ALT, AST, and ALP) and kidney (<em>e.g.</em>, creatinine, uric acid, and BUN) in the serum. Overall, Lf-CCAuNPs with excellent hemocompatibility, and biocompatibility can be deployed as potential antibacterial agents to tackle the menace of pathogenic bacteria.</p></div>\",\"PeriodicalId\":37785,\"journal\":{\"name\":\"OpenNano\",\"volume\":\"12 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OpenNano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352952023000427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Lactoferrin functionalized concave cube Au nanoparticles as biocompatible antibacterial agent
Gold nanoparticles (AuNPs) are one of the most extensively studied nanomaterials and their distinct physicochemical properties make them suitable for versatile applications. Herein, we synthesized concave cube-shaped gold nanoparticles (CCAuNPs) and functionalized them with lactoferrin (Lf), a natural antimicrobial protein, through electrostatic interaction as well as weak covalent formation. The functionalization of CCAuNPs was confirmed through UV–Visible (i.e., bathochromic shift of the surface plasmon resonance peak by 7 nm), Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy, and their surface zeta potential. The concave cusp of CCAuNPs was confirmed through atomic force microscopy (AFM). The Lf-functionalized CCAuNPs (Lf-CCAuNPs) exhibited superior antibacterial propensity against a series of bacteria when compared to that of CCAuNPs. However, they didn't demonstrate any antibacterial activity against Lactobacillus plantarum, one of the key beneficial gut bacteria. The lipid peroxidation (LPO) assay confirmed the oxidation of fatty acids in the bacterial membrane upon interaction with AuNPs, which made the bacterial membrane porous. The resultant membrane-impaired dead bacteria were visualized through CellTox™ Green assay as well as the Trypan Blue dye exclusion assay. Both the nanoparticles demonstrated excellent hemocompatibility as well as biocompatibility (both in vitro and in vivo) as confirmed by MTT assay and the levels of important functional biomarkers of liver (e.g., ALT, AST, and ALP) and kidney (e.g., creatinine, uric acid, and BUN) in the serum. Overall, Lf-CCAuNPs with excellent hemocompatibility, and biocompatibility can be deployed as potential antibacterial agents to tackle the menace of pathogenic bacteria.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.