B. Selenova, Aigerim Ayazbayeva, Alexsey Shakhvorostov, S. Kabdrakhmanova, S. Nauryzova, S. Kudaibergenov
{"title":"基于聚乙烯亚胺稳定的铜纳米粒子和聚2-丙烯酰胺-2-甲基-1-丙磺酸钠的多层聚合物复合材料的制备及理化性能研究","authors":"B. Selenova, Aigerim Ayazbayeva, Alexsey Shakhvorostov, S. Kabdrakhmanova, S. Nauryzova, S. Kudaibergenov","doi":"10.15328/cb1235","DOIUrl":null,"url":null,"abstract":"Multilayer films were synthesized from a complex of branched polyethyleneimine (PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images and SEM micrographs showed a uniform distribution of spherical copper nanoparticles in the homogeneous structure of the multilayer film. The optical characteristics and hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for applications in the field of membrane catalysis, biochips, sensor membranes, and controlled drug delivery.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and study of the physicochemical characteristics of multilayer polymer composites based on poly(ethyleneimine)-stabilized copper nanoparticles and poly(sodium 2-acrylamide-2-methyl-1-propanesulfonate)\",\"authors\":\"B. Selenova, Aigerim Ayazbayeva, Alexsey Shakhvorostov, S. Kabdrakhmanova, S. Nauryzova, S. Kudaibergenov\",\"doi\":\"10.15328/cb1235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilayer films were synthesized from a complex of branched polyethyleneimine (PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images and SEM micrographs showed a uniform distribution of spherical copper nanoparticles in the homogeneous structure of the multilayer film. The optical characteristics and hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for applications in the field of membrane catalysis, biochips, sensor membranes, and controlled drug delivery.\",\"PeriodicalId\":9860,\"journal\":{\"name\":\"Chemical Bulletin of Kazakh National University\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Bulletin of Kazakh National University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15328/cb1235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/cb1235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation and study of the physicochemical characteristics of multilayer polymer composites based on poly(ethyleneimine)-stabilized copper nanoparticles and poly(sodium 2-acrylamide-2-methyl-1-propanesulfonate)
Multilayer films were synthesized from a complex of branched polyethyleneimine (PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images and SEM micrographs showed a uniform distribution of spherical copper nanoparticles in the homogeneous structure of the multilayer film. The optical characteristics and hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for applications in the field of membrane catalysis, biochips, sensor membranes, and controlled drug delivery.