来自朋友:你必须看这个!

IF 0.7 Q3 COMMUNICATION Electronic News Pub Date : 2018-06-01 DOI:10.1177/1931243117716499
J. Ware
{"title":"来自朋友:你必须看这个!","authors":"J. Ware","doi":"10.1177/1931243117716499","DOIUrl":null,"url":null,"abstract":"Social sharing of news content through Twitter, Facebook, email, and other platforms is increasingly important to local television (TV) news stations. This article presents the results of a longitudinal content analysis of the prevalence and design of the automated social sharing tools presented next to timely, local news content on TV news websites between 2010 and 2015. While 93% of news websites now contain automated social sharing icons, approximately 36% of the social shares from these tools contain incorrect information or lead back to different content altogether. While social sharing options have increased since 2010, automated messages shared with the links, and link accuracy rates, remain relatively unchanged. As readers’ social sharing of news stories becomes more important to the TV news industry’s penetration into social media platforms, it is increasingly crucial to study these automated social tools and how they can serve as unintentional gatekeepers by sharing the wrong information.","PeriodicalId":29929,"journal":{"name":"Electronic News","volume":"12 1","pages":"112 - 94"},"PeriodicalIF":0.7000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1931243117716499","citationCount":"1","resultStr":"{\"title\":\"From a Friend: You’ve Got to Watch This!\",\"authors\":\"J. Ware\",\"doi\":\"10.1177/1931243117716499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social sharing of news content through Twitter, Facebook, email, and other platforms is increasingly important to local television (TV) news stations. This article presents the results of a longitudinal content analysis of the prevalence and design of the automated social sharing tools presented next to timely, local news content on TV news websites between 2010 and 2015. While 93% of news websites now contain automated social sharing icons, approximately 36% of the social shares from these tools contain incorrect information or lead back to different content altogether. While social sharing options have increased since 2010, automated messages shared with the links, and link accuracy rates, remain relatively unchanged. As readers’ social sharing of news stories becomes more important to the TV news industry’s penetration into social media platforms, it is increasingly crucial to study these automated social tools and how they can serve as unintentional gatekeepers by sharing the wrong information.\",\"PeriodicalId\":29929,\"journal\":{\"name\":\"Electronic News\",\"volume\":\"12 1\",\"pages\":\"112 - 94\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1931243117716499\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1931243117716499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1931243117716499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 1

摘要

通过Twitter、Facebook、电子邮件和其他平台进行新闻内容的社交分享对当地电视台来说越来越重要。本文介绍了2010年至2015年间电视新闻网站上实时本地新闻内容旁边的自动社交共享工具的流行率和设计的纵向内容分析结果。虽然93%的新闻网站现在包含自动社交共享图标,但这些工具中约36%的社交共享包含不正确的信息或导致返回不同的内容。虽然自2010年以来,社交共享选项有所增加,但与链接共享的自动消息和链接准确率保持相对不变。随着读者对新闻故事的社交分享对电视新闻行业渗透到社交媒体平台变得越来越重要,研究这些自动化社交工具以及它们如何通过分享错误信息来充当无意的看门人变得越来越关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From a Friend: You’ve Got to Watch This!
Social sharing of news content through Twitter, Facebook, email, and other platforms is increasingly important to local television (TV) news stations. This article presents the results of a longitudinal content analysis of the prevalence and design of the automated social sharing tools presented next to timely, local news content on TV news websites between 2010 and 2015. While 93% of news websites now contain automated social sharing icons, approximately 36% of the social shares from these tools contain incorrect information or lead back to different content altogether. While social sharing options have increased since 2010, automated messages shared with the links, and link accuracy rates, remain relatively unchanged. As readers’ social sharing of news stories becomes more important to the TV news industry’s penetration into social media platforms, it is increasingly crucial to study these automated social tools and how they can serve as unintentional gatekeepers by sharing the wrong information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic News
Electronic News COMMUNICATION-
CiteScore
1.60
自引率
20.00%
发文量
16
期刊最新文献
Does Tribe Trump Facts? Novel Measures of Hostile Media The Social Media Comment Section as an Unruly Public Arena: How Comment Reading Erodes Trust in News Media Innovation and Determination: How Local American TV Journalists Told the COVID-19 “Story of a Lifetime” “Standard” Appearance and “Accentless” Speech: How Performance Neutrality Limits Diversity in Broadcast News Attitudes of U.S. Public Broadcasters: A Liberal Helping of Interpretive Journalism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1