使用iGMAS超快速产品的增强型多GNSS单点定位算法的亚米级导航

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE Journal of Navigation Pub Date : 2023-01-01 DOI:10.1017/S0373463322000601
Sinan Birinci, M. H. Saka
{"title":"使用iGMAS超快速产品的增强型多GNSS单点定位算法的亚米级导航","authors":"Sinan Birinci, M. H. Saka","doi":"10.1017/S0373463322000601","DOIUrl":null,"url":null,"abstract":"Abstract Ultra-rapid products have the advantage of being used in real-time positioning with no external connections. In this study, these products provided by the international GNSS Monitoring and Assessment System (iGMAS) for four global constellations (GPS, GLONASS, Galileo and BDS-3) were assessed in terms of service rate and accuracy in navigation. In this regard, a MATLAB-based in-house code solving the problem was developed for all possible combinations of the constellations. To explore the effectiveness of the iGMAS products, the same dataset has been also processed using GFZ rapid products. The results demonstrate that the GPS and Galileo solutions were substantially comparable to the rapid products concerning service rate and accuracy, but that the GLONASS and BDS-3 iGMAS products require some enhancements. In addition, the Galileo solution produced remarkably good results both individually and in combination. The GPS/GLONASS/Galileo/BDS-3 SPP solution generated a mean root mean square (RMS) error of 0 ⋅ 54 m horizontally and 0 ⋅ 89 m vertically. Thus, GPS-only, GLONASS-only, Galileo-only and BDS-3-only solutions were improved by 42%, 79%, 28% and 74% in 3D mean RMS error with the quad system solutions, respectively.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"133 - 151"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-meter-level navigation with an enhanced multi-GNSS single-point positioning algorithm using iGMAS ultra-rapid products\",\"authors\":\"Sinan Birinci, M. H. Saka\",\"doi\":\"10.1017/S0373463322000601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ultra-rapid products have the advantage of being used in real-time positioning with no external connections. In this study, these products provided by the international GNSS Monitoring and Assessment System (iGMAS) for four global constellations (GPS, GLONASS, Galileo and BDS-3) were assessed in terms of service rate and accuracy in navigation. In this regard, a MATLAB-based in-house code solving the problem was developed for all possible combinations of the constellations. To explore the effectiveness of the iGMAS products, the same dataset has been also processed using GFZ rapid products. The results demonstrate that the GPS and Galileo solutions were substantially comparable to the rapid products concerning service rate and accuracy, but that the GLONASS and BDS-3 iGMAS products require some enhancements. In addition, the Galileo solution produced remarkably good results both individually and in combination. The GPS/GLONASS/Galileo/BDS-3 SPP solution generated a mean root mean square (RMS) error of 0 ⋅ 54 m horizontally and 0 ⋅ 89 m vertically. Thus, GPS-only, GLONASS-only, Galileo-only and BDS-3-only solutions were improved by 42%, 79%, 28% and 74% in 3D mean RMS error with the quad system solutions, respectively.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"76 1\",\"pages\":\"133 - 151\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000601\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000601","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

摘要超快速产品具有无需外部连接即可用于实时定位的优点。在这项研究中,国际全球导航卫星系统监测和评估系统(iGMAS)为四个全球星座(GPS、GLONASS、伽利略和BDS-3)提供的这些产品从导航服务率和准确性方面进行了评估。在这方面,针对所有可能的星座组合,开发了一个基于MATLAB的内部代码来解决问题。为了探索iGMAS产品的有效性,同样的数据集也使用GFZ快速产品进行了处理。结果表明,全球定位系统和伽利略解决方案在服务速率和准确性方面与快速产品基本相当,但GLONASS和BDS-3 iGMAS产品需要一些改进。此外,伽利略解决方案无论是单独还是组合都产生了非常好的结果。GPS/GLONASS/Galileo/BDS-3 SPP解决方案产生的均方根(RMS)误差水平为0·54 m,垂直为0·89 m。因此,使用四元系统解决方案,仅GPS、仅GLONASS、仅Galileo和仅BDS-3解决方案的3D平均RMS误差分别提高了42%、79%、28%和74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-meter-level navigation with an enhanced multi-GNSS single-point positioning algorithm using iGMAS ultra-rapid products
Abstract Ultra-rapid products have the advantage of being used in real-time positioning with no external connections. In this study, these products provided by the international GNSS Monitoring and Assessment System (iGMAS) for four global constellations (GPS, GLONASS, Galileo and BDS-3) were assessed in terms of service rate and accuracy in navigation. In this regard, a MATLAB-based in-house code solving the problem was developed for all possible combinations of the constellations. To explore the effectiveness of the iGMAS products, the same dataset has been also processed using GFZ rapid products. The results demonstrate that the GPS and Galileo solutions were substantially comparable to the rapid products concerning service rate and accuracy, but that the GLONASS and BDS-3 iGMAS products require some enhancements. In addition, the Galileo solution produced remarkably good results both individually and in combination. The GPS/GLONASS/Galileo/BDS-3 SPP solution generated a mean root mean square (RMS) error of 0 ⋅ 54 m horizontally and 0 ⋅ 89 m vertically. Thus, GPS-only, GLONASS-only, Galileo-only and BDS-3-only solutions were improved by 42%, 79%, 28% and 74% in 3D mean RMS error with the quad system solutions, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
期刊最新文献
The supine moving apprehension test-Reliability and validity among healthy individuals and patients with anterior shoulder instability. GPS + Galileo + BDS-3 medium to long-range single-baseline RTK: an alternative for network-based RTK? Compass adjustment by GPS (or any other GNSS receiver) and a single visual reference Navigation pattern extraction from AIS trajectory big data via topic model The Impact of Vaccination Among Hospitalized Patients with the Diagnosis of COVID-19.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1