Ahmed Chabane, F. Bouchal, Mohamed Hentabli, F. Rezgui, Houssam Eddine Slama
{"title":"用DA-SVM、MLR、PLS和OLS回归技术建立PCL-PVP包封曲马多的累积药物释放模型","authors":"Ahmed Chabane, F. Bouchal, Mohamed Hentabli, F. Rezgui, Houssam Eddine Slama","doi":"10.15255/kui.2021.008","DOIUrl":null,"url":null,"abstract":"This work aimed to model the kinetics of cumulative drug release from formulations based on encapsulation by biodegradable polycaprolactone and polyvinylpyrrolidone polymers. Different ratios of the polymerswere prepared by a solvent evaporation method using Span 20 and Span 80 as surfactants. The cumulative drug release was estimated depending on the formulation component and time. Four models: hybrid model of support vector machine and dragonfly algorithm (DA-SVM), partial least squares (PLS) model, multiple linear regression (MLR) model, and ordinary least squared (OLS) model, were developed and compared. The statistical analysis proved there were no issues in variable inputs. The results showed that the DA-SVM model gave a better result where a determination coefficient was close to one and RMSE error close to zero. A graphical interface was built to calculate the cumulative drug release.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulative Drug Release Modelling of PCL-PVP Encapsulated Tramadol by DA-SVM, MLR, PLS, and OLS Regression Techniques\",\"authors\":\"Ahmed Chabane, F. Bouchal, Mohamed Hentabli, F. Rezgui, Houssam Eddine Slama\",\"doi\":\"10.15255/kui.2021.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aimed to model the kinetics of cumulative drug release from formulations based on encapsulation by biodegradable polycaprolactone and polyvinylpyrrolidone polymers. Different ratios of the polymerswere prepared by a solvent evaporation method using Span 20 and Span 80 as surfactants. The cumulative drug release was estimated depending on the formulation component and time. Four models: hybrid model of support vector machine and dragonfly algorithm (DA-SVM), partial least squares (PLS) model, multiple linear regression (MLR) model, and ordinary least squared (OLS) model, were developed and compared. The statistical analysis proved there were no issues in variable inputs. The results showed that the DA-SVM model gave a better result where a determination coefficient was close to one and RMSE error close to zero. A graphical interface was built to calculate the cumulative drug release.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15255/kui.2021.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15255/kui.2021.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cumulative Drug Release Modelling of PCL-PVP Encapsulated Tramadol by DA-SVM, MLR, PLS, and OLS Regression Techniques
This work aimed to model the kinetics of cumulative drug release from formulations based on encapsulation by biodegradable polycaprolactone and polyvinylpyrrolidone polymers. Different ratios of the polymerswere prepared by a solvent evaporation method using Span 20 and Span 80 as surfactants. The cumulative drug release was estimated depending on the formulation component and time. Four models: hybrid model of support vector machine and dragonfly algorithm (DA-SVM), partial least squares (PLS) model, multiple linear regression (MLR) model, and ordinary least squared (OLS) model, were developed and compared. The statistical analysis proved there were no issues in variable inputs. The results showed that the DA-SVM model gave a better result where a determination coefficient was close to one and RMSE error close to zero. A graphical interface was built to calculate the cumulative drug release.