用混合回归估计条件事件概率:一种加权最近邻方法

IF 0.3 Q4 ECONOMICS Statistika-Statistics and Economy Journal Pub Date : 2023-06-16 DOI:10.54694/stat.2022.45
M. Khatun, S. Siddiqui
{"title":"用混合回归估计条件事件概率:一种加权最近邻方法","authors":"M. Khatun, S. Siddiqui","doi":"10.54694/stat.2022.45","DOIUrl":null,"url":null,"abstract":"The k-Nearest Neighbour method is a popular nonparametric technique for solving classification and regression problems without having to make potentially restrictive a priori assumptions about the functional form of the statistical relationship under investigation. The purpose of this paper was to demonstrate that the scope of this method can be extended in a way that enables the simultaneous consideration of continuous, ordered discrete, and unordered discrete explanatory variables. An exemplary application to a publicly available dataset demonstrated the feasibility of the proposed approach.","PeriodicalId":43106,"journal":{"name":"Statistika-Statistics and Economy Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Conditional Event Probabilities with Mixed Regressors: a Weighted Nearest Neighbour Approach\",\"authors\":\"M. Khatun, S. Siddiqui\",\"doi\":\"10.54694/stat.2022.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The k-Nearest Neighbour method is a popular nonparametric technique for solving classification and regression problems without having to make potentially restrictive a priori assumptions about the functional form of the statistical relationship under investigation. The purpose of this paper was to demonstrate that the scope of this method can be extended in a way that enables the simultaneous consideration of continuous, ordered discrete, and unordered discrete explanatory variables. An exemplary application to a publicly available dataset demonstrated the feasibility of the proposed approach.\",\"PeriodicalId\":43106,\"journal\":{\"name\":\"Statistika-Statistics and Economy Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistika-Statistics and Economy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54694/stat.2022.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistika-Statistics and Economy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54694/stat.2022.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

k近邻方法是一种流行的非参数技术,用于解决分类和回归问题,而不必对所研究的统计关系的函数形式做出潜在的限制性先验假设。本文的目的是证明这种方法的范围可以扩展,从而能够同时考虑连续、有序离散和无序离散的解释变量。公开可用数据集的示例性应用证明了所提出方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Conditional Event Probabilities with Mixed Regressors: a Weighted Nearest Neighbour Approach
The k-Nearest Neighbour method is a popular nonparametric technique for solving classification and regression problems without having to make potentially restrictive a priori assumptions about the functional form of the statistical relationship under investigation. The purpose of this paper was to demonstrate that the scope of this method can be extended in a way that enables the simultaneous consideration of continuous, ordered discrete, and unordered discrete explanatory variables. An exemplary application to a publicly available dataset demonstrated the feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
23
审稿时长
24 weeks
期刊最新文献
A Comparative Analysis of Business and Economics Researchers in the Visegrad Group of Countries, Austria and Romania Based on the Data Obtained from SciVal and Scopus The Relationship between Monetary Aggregates and Inflation – the Case of the Czech Republic The Czech Republic and Austrian Tourism in Scope of German Visitors The Impact of External Debt on Human Capital Development and GDP Growth in HIPCs: a Comprehensive Approach Evaluation of Digital Development Based on the International Digital Economy and Society Index 2020 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1