大数据变量的使用是否改善了货币政策的估计?来自墨西哥的证据

IF 0.9 Q3 ECONOMICS Economics and Business Letters Pub Date : 2021-12-09 DOI:10.17811/ebl.10.4.2021.383-393
Luis Alberto Delgado-de-la-Garza, Gonzalo Adolfo Garza-Rodríguez, Daniel Alejandro Jacques-Osuna, Alejandro Múgica-Lara, C. A. Carrasco
{"title":"大数据变量的使用是否改善了货币政策的估计?来自墨西哥的证据","authors":"Luis Alberto Delgado-de-la-Garza, Gonzalo Adolfo Garza-Rodríguez, Daniel Alejandro Jacques-Osuna, Alejandro Múgica-Lara, C. A. Carrasco","doi":"10.17811/ebl.10.4.2021.383-393","DOIUrl":null,"url":null,"abstract":"We analyse the performance improvement on a monetary policy model of introducing non-conventional market attention (NCMA) indices generated using big data. To address this aim, we extracted top keywords by text mining Banco de Mexico’s minutes. Then, we used Google search information according to the top keywords and related queries to generate NCMA indices. Finally, we introduce as covariates the NCMA indices into a bivariate probit model of monetary policy and contrast several specifications to examine the improvement in the model estimates. Our results show evidence of the statistical significance of the NCMA indices where the expanded model performed better than models only including conventional economic and financial variables.","PeriodicalId":43184,"journal":{"name":"Economics and Business Letters","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does the use of a big data variable improve monetary policy estimates? Evidence from Mexico\",\"authors\":\"Luis Alberto Delgado-de-la-Garza, Gonzalo Adolfo Garza-Rodríguez, Daniel Alejandro Jacques-Osuna, Alejandro Múgica-Lara, C. A. Carrasco\",\"doi\":\"10.17811/ebl.10.4.2021.383-393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the performance improvement on a monetary policy model of introducing non-conventional market attention (NCMA) indices generated using big data. To address this aim, we extracted top keywords by text mining Banco de Mexico’s minutes. Then, we used Google search information according to the top keywords and related queries to generate NCMA indices. Finally, we introduce as covariates the NCMA indices into a bivariate probit model of monetary policy and contrast several specifications to examine the improvement in the model estimates. Our results show evidence of the statistical significance of the NCMA indices where the expanded model performed better than models only including conventional economic and financial variables.\",\"PeriodicalId\":43184,\"journal\":{\"name\":\"Economics and Business Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics and Business Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17811/ebl.10.4.2021.383-393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics and Business Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17811/ebl.10.4.2021.383-393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了引入使用大数据生成的非传统市场注意力(NCMA)指数的货币政策模型的性能改进。为了实现这一目标,我们通过文本挖掘墨西哥银行的会议记录提取了热门关键词。然后,我们根据排名靠前的关键词和相关查询,使用谷歌搜索信息生成NCMA索引。最后,我们将NCMA指数作为协变量引入货币政策的双变量probit模型中,并对比几种规范来检验模型估计的改进。我们的结果证明了NCMA指数的统计显著性,其中扩展模型的表现优于仅包括传统经济和金融变量的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does the use of a big data variable improve monetary policy estimates? Evidence from Mexico
We analyse the performance improvement on a monetary policy model of introducing non-conventional market attention (NCMA) indices generated using big data. To address this aim, we extracted top keywords by text mining Banco de Mexico’s minutes. Then, we used Google search information according to the top keywords and related queries to generate NCMA indices. Finally, we introduce as covariates the NCMA indices into a bivariate probit model of monetary policy and contrast several specifications to examine the improvement in the model estimates. Our results show evidence of the statistical significance of the NCMA indices where the expanded model performed better than models only including conventional economic and financial variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
18
期刊介绍: Economics and Business Letters is an open access journal that publishes both theoretical and empirical quality original papers in all economics and business fields. In addition, relevant discussions on current policy issues will be considered for the Policy Watch section. As general strategy of EBL, the journal will launch calls for papers for special issues on topics of interest, generally with invited guest editors. The maximum length of the letters is limited to 2,500 words.
期刊最新文献
A note on institutional trust and poverty: evidence from Latin America Online disinformation: an economic analysis A micro-foundation of a simple financial model with finite-time singularity bubble and its agent-based simulation Home-ownership and unemployment: revisiting the Oswald hypothesis from a regional heterogeneity perspective Does export intensity of heterogeneous firms affect leverage? Evidence from a small open economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1