回顾和分析泥炭和其他有机土壤的收缩与所选土壤性质的关系

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-07-20 DOI:10.1002/vzj2.20264
Ronny Seidel, U. Dettmann, B. Tiemeyer
{"title":"回顾和分析泥炭和其他有机土壤的收缩与所选土壤性质的关系","authors":"Ronny Seidel, U. Dettmann, B. Tiemeyer","doi":"10.1002/vzj2.20264","DOIUrl":null,"url":null,"abstract":"Peat and other organic soils (e.g., organo‐mineral soils) show distinctive volume changes through desiccation and wetting. Important processes behind volume changes are shrinkage and swelling. There is a long history of studies on shrinkage which were conducted under different schemes for soil descriptions, nomenclatures and parameters, measurement approaches, and terminologies. To date, these studies have not been harmonized in order to compare or predict shrinkage from different soil properties, for example, bulk density or substrate composition. This, however, is necessary to prevent biases in the determination of volume‐based soil properties or for the interpretation of elevation measurements in peatlands, in order to predict carbon dioxide emissions or uptake caused by microbial decomposition or peat formation. This study gives a comprehensive overview of shrinkage studies carried out in the last 100 years. Terminology and approaches are systematically classified. In part I, the concepts for shrinkage characteristics, measurement methods, and model approaches are summarized. Part II is a meta‐analysis of shrinkage studies on peat and other organic soils amended by own measurement data obtained by a three‐dimensional structured light scanner. The results show that maximum shrinkage has a wide range from 11% to 93% and is strongly affected by common soil properties (botanical composition, degree of decomposition, soil organic carbon, and bulk density). Showing a stronger correlation, bulk density was a better predictor than soil organic carbon, but maximum shrinkage showed a large spread over all types of peat and other organic soils and ranges of bulk density and soil organic carbon.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties\",\"authors\":\"Ronny Seidel, U. Dettmann, B. Tiemeyer\",\"doi\":\"10.1002/vzj2.20264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peat and other organic soils (e.g., organo‐mineral soils) show distinctive volume changes through desiccation and wetting. Important processes behind volume changes are shrinkage and swelling. There is a long history of studies on shrinkage which were conducted under different schemes for soil descriptions, nomenclatures and parameters, measurement approaches, and terminologies. To date, these studies have not been harmonized in order to compare or predict shrinkage from different soil properties, for example, bulk density or substrate composition. This, however, is necessary to prevent biases in the determination of volume‐based soil properties or for the interpretation of elevation measurements in peatlands, in order to predict carbon dioxide emissions or uptake caused by microbial decomposition or peat formation. This study gives a comprehensive overview of shrinkage studies carried out in the last 100 years. Terminology and approaches are systematically classified. In part I, the concepts for shrinkage characteristics, measurement methods, and model approaches are summarized. Part II is a meta‐analysis of shrinkage studies on peat and other organic soils amended by own measurement data obtained by a three‐dimensional structured light scanner. The results show that maximum shrinkage has a wide range from 11% to 93% and is strongly affected by common soil properties (botanical composition, degree of decomposition, soil organic carbon, and bulk density). Showing a stronger correlation, bulk density was a better predictor than soil organic carbon, but maximum shrinkage showed a large spread over all types of peat and other organic soils and ranges of bulk density and soil organic carbon.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

泥炭和其他有机土壤(如有机矿物土壤)通过干燥和湿润表现出独特的体积变化。体积变化背后的重要过程是收缩和膨胀。关于收缩的研究有着悠久的历史,这些研究是在不同的土壤描述、命名和参数、测量方法和术语方案下进行的。到目前为止,这些研究还没有统一起来,以比较或预测不同土壤性质的收缩,例如堆积密度或基质成分。然而,为了预测微生物分解或泥炭形成引起的二氧化碳排放或吸收,有必要防止在确定基于体积的土壤特性或解释泥炭地海拔测量时出现偏差。本研究全面概述了过去100年中进行的收缩研究。术语和方法被系统地分类。在第一部分中,总结了收缩特性的概念、测量方法和模型方法。第二部分是泥炭和其他有机土壤收缩研究的荟萃分析,通过三维结构光扫描仪获得的测量数据进行了修正。结果表明,最大收缩率在11%至93%之间,受常见土壤性质(植物成分、分解程度、土壤有机碳和堆积密度)的强烈影响。体积密度比土壤有机碳具有更强的相关性,是更好的预测因子,但最大收缩率在所有类型的泥炭和其他有机土壤以及体积密度和土壤有机碳的范围内都有很大的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties
Peat and other organic soils (e.g., organo‐mineral soils) show distinctive volume changes through desiccation and wetting. Important processes behind volume changes are shrinkage and swelling. There is a long history of studies on shrinkage which were conducted under different schemes for soil descriptions, nomenclatures and parameters, measurement approaches, and terminologies. To date, these studies have not been harmonized in order to compare or predict shrinkage from different soil properties, for example, bulk density or substrate composition. This, however, is necessary to prevent biases in the determination of volume‐based soil properties or for the interpretation of elevation measurements in peatlands, in order to predict carbon dioxide emissions or uptake caused by microbial decomposition or peat formation. This study gives a comprehensive overview of shrinkage studies carried out in the last 100 years. Terminology and approaches are systematically classified. In part I, the concepts for shrinkage characteristics, measurement methods, and model approaches are summarized. Part II is a meta‐analysis of shrinkage studies on peat and other organic soils amended by own measurement data obtained by a three‐dimensional structured light scanner. The results show that maximum shrinkage has a wide range from 11% to 93% and is strongly affected by common soil properties (botanical composition, degree of decomposition, soil organic carbon, and bulk density). Showing a stronger correlation, bulk density was a better predictor than soil organic carbon, but maximum shrinkage showed a large spread over all types of peat and other organic soils and ranges of bulk density and soil organic carbon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1