{"title":"无纠缠的安全量子遥感","authors":"S. Moore, J. Dunningham","doi":"10.1116/5.0137260","DOIUrl":null,"url":null,"abstract":"Quantum metrology and quantum communications are typically considered as distinct applications in the broader portfolio of quantum technologies. However, there are cases where we might want to combine the two, and recent proposals have shown how this might be achieved in entanglement-based systems. Here, we present an entanglement-free alternative that has advantages in terms of simplicity and practicality, requiring only individual qubits to be transmitted. We demonstrate the performance of the scheme in both the low and high data limits, showing quantum advantages both in terms of measurement precision and security against a range of possible attacks.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secure quantum remote sensing without entanglement\",\"authors\":\"S. Moore, J. Dunningham\",\"doi\":\"10.1116/5.0137260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum metrology and quantum communications are typically considered as distinct applications in the broader portfolio of quantum technologies. However, there are cases where we might want to combine the two, and recent proposals have shown how this might be achieved in entanglement-based systems. Here, we present an entanglement-free alternative that has advantages in terms of simplicity and practicality, requiring only individual qubits to be transmitted. We demonstrate the performance of the scheme in both the low and high data limits, showing quantum advantages both in terms of measurement precision and security against a range of possible attacks.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0137260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0137260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Secure quantum remote sensing without entanglement
Quantum metrology and quantum communications are typically considered as distinct applications in the broader portfolio of quantum technologies. However, there are cases where we might want to combine the two, and recent proposals have shown how this might be achieved in entanglement-based systems. Here, we present an entanglement-free alternative that has advantages in terms of simplicity and practicality, requiring only individual qubits to be transmitted. We demonstrate the performance of the scheme in both the low and high data limits, showing quantum advantages both in terms of measurement precision and security against a range of possible attacks.