Xinyue Chen, Zhiwei Zhao, X. Jia, Yan-Hu Yu, Yong Fang, Mengru Zhu, Z. Weng, W. Lei, S. B. Shafe, M. N. Mohtar
{"title":"基于局域表面等离子体增强碳点的铝纳米粒子太阳盲紫外光电探测器","authors":"Xinyue Chen, Zhiwei Zhao, X. Jia, Yan-Hu Yu, Yong Fang, Mengru Zhu, Z. Weng, W. Lei, S. B. Shafe, M. N. Mohtar","doi":"10.1117/1.JNP.17.026013","DOIUrl":null,"url":null,"abstract":"Abstract. Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"026013 - 026013"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles\",\"authors\":\"Xinyue Chen, Zhiwei Zhao, X. Jia, Yan-Hu Yu, Yong Fang, Mengru Zhu, Z. Weng, W. Lei, S. B. Shafe, M. N. Mohtar\",\"doi\":\"10.1117/1.JNP.17.026013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"17 1\",\"pages\":\"026013 - 026013\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.17.026013\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.026013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles
Abstract. Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.