新型贝克酵母介导的微波诱导还原外消旋3-酮-2-氮杂环丁酮:促进光学活性羟基β-内酰胺衍生物的进入

IF 0.9 Q4 CHEMISTRY, PHYSICAL Current Organocatalysis Pub Date : 2022-01-26 DOI:10.2174/2213337209666220126123630
Aparna Das, R. N. Yadav, B. Banik
{"title":"新型贝克酵母介导的微波诱导还原外消旋3-酮-2-氮杂环丁酮:促进光学活性羟基β-内酰胺衍生物的进入","authors":"Aparna Das, R. N. Yadav, B. Banik","doi":"10.2174/2213337209666220126123630","DOIUrl":null,"url":null,"abstract":"\n\nMicrowave technology, together with enzymatic catalysis is a nature-friendly chemical synthesis method with low wastage of solvent and good yield of the products.\n\n\n\nEnzymes from various microorganisms can be used in the biochemical processes of a wide range of compounds assisted by microwave irradiation\n\n\n\nIn this work, the microwave-induced reaction of α-keto β-lactams by Baker's yeast in organic solvent was conducted to afford optically active cis and trans-α-hydroxy-β-lactams for the first time.\n\n\n\nThese hydroxy compounds are the precursors of numerous natural products of medicinal significances.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Baker’s Yeast-Mediated Microwave-Induced Reduction of Racemic 3-Keto-2-Azetidinones: Facile Entry to Optically Active Hydroxy β-Lactam Derivatives\",\"authors\":\"Aparna Das, R. N. Yadav, B. Banik\",\"doi\":\"10.2174/2213337209666220126123630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nMicrowave technology, together with enzymatic catalysis is a nature-friendly chemical synthesis method with low wastage of solvent and good yield of the products.\\n\\n\\n\\nEnzymes from various microorganisms can be used in the biochemical processes of a wide range of compounds assisted by microwave irradiation\\n\\n\\n\\nIn this work, the microwave-induced reaction of α-keto β-lactams by Baker's yeast in organic solvent was conducted to afford optically active cis and trans-α-hydroxy-β-lactams for the first time.\\n\\n\\n\\nThese hydroxy compounds are the precursors of numerous natural products of medicinal significances.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337209666220126123630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337209666220126123630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微波技术与酶催化相结合是一种自然友好的化学合成方法,溶剂损耗低,产物收率高。来自各种微生物的酶在微波辐射的辅助下可用于多种化合物的生物化学过程。本工作中,贝克酵母在有机溶剂中对α-酮-β-内酰胺进行了微波诱导反应,首次获得了具有光学活性的顺式和反式-α-羟基-β-内酰胺。这些羟基化合物是许多具有药用意义的天然产物的前体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Baker’s Yeast-Mediated Microwave-Induced Reduction of Racemic 3-Keto-2-Azetidinones: Facile Entry to Optically Active Hydroxy β-Lactam Derivatives
Microwave technology, together with enzymatic catalysis is a nature-friendly chemical synthesis method with low wastage of solvent and good yield of the products. Enzymes from various microorganisms can be used in the biochemical processes of a wide range of compounds assisted by microwave irradiation In this work, the microwave-induced reaction of α-keto β-lactams by Baker's yeast in organic solvent was conducted to afford optically active cis and trans-α-hydroxy-β-lactams for the first time. These hydroxy compounds are the precursors of numerous natural products of medicinal significances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organocatalysis
Current Organocatalysis CHEMISTRY, PHYSICAL-
CiteScore
2.00
自引率
0.00%
发文量
28
期刊介绍: Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.
期刊最新文献
Biotransformation of Cinnamic Acid, Cinnamaldehyde, Furfural and Epoxidation of Cyclohexene by Plant Catalase Water Extract of Onion Catalyst: A Sustainable Approach for the Synthesis of 4-Substituted 1,5-Benzodiazepine Derivatives via an In Situ Generated Enaminones Design of Dendritic Foldamers as Catalysts for Organic Synthesis A Review on the Recent Progress of Layered Double Hydroxides (LDHs)- based Catalysts for Heterocyclic Synthesis Advances in Synthesis of Indazole Variants: A Comprehensive Review of Transition Metal, Acid/Base and Green Chemistry-based Catalytic Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1