一种新的基于自然的局部阴影条件下的最大功率点跟踪算法

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Engineering & Electromechanics Pub Date : 2021-12-03 DOI:10.20998/2074-272x.2021.6.08
S. A. Khan, T. Mahmood, K.S. Awan
{"title":"一种新的基于自然的局部阴影条件下的最大功率点跟踪算法","authors":"S. A. Khan, T. Mahmood, K.S. Awan","doi":"10.20998/2074-272x.2021.6.08","DOIUrl":null,"url":null,"abstract":"Introduction. The huge demand of green energy over past few decades have drawn the interest of scientists and researchers. Solar energy is the most abundant and easily available source but there have been so many problems with its optimum extraction of output. The factors affecting the maximum power point tracking of PV systems are input irradiance, temperature, load etc. The variations in irradiance level lead to partial shading that causes reduction in performance by not letting system to operate at maximum power point. Many methods have been proposed in literature to optimize the performance of PV systems but each method has shortcomings that have failed all of them. The actual problem occurs when partial shading is very strong; this is where most of the methods totally fail. So proposed work addresses this issue and solves it to the fullest. The novelty in the proposed work is that it introduces a new nature-based algorithm that works on the principle of plant propagation. It is a natural optimization technique that plants follow to survive and propagate in different environmental conditions. The proposed method efficiently tracks the global peak under all shading conditions and is simple to implement with high accuracy and tracking speed. Purpose. Building an algorithm that can track global peak of photovoltaic systems under all shading conditions and extracts the maximum possible power from the system, and is simple and easy to implement. Methods. The method is implemented in MATLAB / Simulink on an electrical model that uses a PV array model. Different shadings are applied to check for the results. Results. The results have shown that for different photovoltaic configurations the algorithm performs very good under uniform and partial shadings conditions. Its accuracy, tracking efficiency and tracking time has increased reasonably. Practical value. The project can be very beneficial to people as it enhances the performances of PV systems that can make them self-sufficient in electrical energy, focuses on sustainable development and reduces pollution. This way it can have huge impact on human life.","PeriodicalId":44198,"journal":{"name":"Electrical Engineering & Electromechanics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A nature based novel maximum power point tracking algorithm for partial shading conditions\",\"authors\":\"S. A. Khan, T. Mahmood, K.S. Awan\",\"doi\":\"10.20998/2074-272x.2021.6.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The huge demand of green energy over past few decades have drawn the interest of scientists and researchers. Solar energy is the most abundant and easily available source but there have been so many problems with its optimum extraction of output. The factors affecting the maximum power point tracking of PV systems are input irradiance, temperature, load etc. The variations in irradiance level lead to partial shading that causes reduction in performance by not letting system to operate at maximum power point. Many methods have been proposed in literature to optimize the performance of PV systems but each method has shortcomings that have failed all of them. The actual problem occurs when partial shading is very strong; this is where most of the methods totally fail. So proposed work addresses this issue and solves it to the fullest. The novelty in the proposed work is that it introduces a new nature-based algorithm that works on the principle of plant propagation. It is a natural optimization technique that plants follow to survive and propagate in different environmental conditions. The proposed method efficiently tracks the global peak under all shading conditions and is simple to implement with high accuracy and tracking speed. Purpose. Building an algorithm that can track global peak of photovoltaic systems under all shading conditions and extracts the maximum possible power from the system, and is simple and easy to implement. Methods. The method is implemented in MATLAB / Simulink on an electrical model that uses a PV array model. Different shadings are applied to check for the results. Results. The results have shown that for different photovoltaic configurations the algorithm performs very good under uniform and partial shadings conditions. Its accuracy, tracking efficiency and tracking time has increased reasonably. Practical value. The project can be very beneficial to people as it enhances the performances of PV systems that can make them self-sufficient in electrical energy, focuses on sustainable development and reduces pollution. This way it can have huge impact on human life.\",\"PeriodicalId\":44198,\"journal\":{\"name\":\"Electrical Engineering & Electromechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering & Electromechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2074-272x.2021.6.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering & Electromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2074-272x.2021.6.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

介绍过去几十年对绿色能源的巨大需求引起了科学家和研究人员的兴趣。太阳能是最丰富、最容易获得的能源,但在其产量的最佳提取方面存在许多问题。影响光伏系统最大功率点跟踪的因素包括输入辐照度、温度、负载等。辐照度水平的变化会导致部分阴影,不让系统在最大功率点运行会导致性能下降。文献中已经提出了许多方法来优化光伏系统的性能,但每种方法都有不足之处,这些方法都失败了。实际问题发生在局部着色非常强烈的情况下;这是大多数方法完全失败的地方。因此,拟议的工作解决了这个问题,并最大限度地解决了它。所提出的工作的新颖之处在于,它引入了一种新的基于自然的算法,该算法基于植物繁殖的原理。植物在不同的环境条件下生存和繁殖是一种自然优化技术。所提出的方法在所有阴影条件下都能有效地跟踪全局峰值,并且实现简单,精度高,跟踪速度快。意图构建一种算法,该算法可以跟踪光伏系统在所有遮光条件下的全局峰值,并从系统中提取最大可能功率,并且简单易实现。方法。该方法在使用光伏阵列模型的电气模型上用MATLAB/Simulink实现。应用不同的阴影来检查结果。后果结果表明,对于不同的光伏配置,该算法在均匀和部分阴影条件下表现良好。它的精度、跟踪效率和跟踪时间都有了合理的提高。实用价值。该项目对人们非常有益,因为它提高了光伏系统的性能,使其能够自给自足,专注于可持续发展并减少污染。这样,它可以对人类生活产生巨大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A nature based novel maximum power point tracking algorithm for partial shading conditions
Introduction. The huge demand of green energy over past few decades have drawn the interest of scientists and researchers. Solar energy is the most abundant and easily available source but there have been so many problems with its optimum extraction of output. The factors affecting the maximum power point tracking of PV systems are input irradiance, temperature, load etc. The variations in irradiance level lead to partial shading that causes reduction in performance by not letting system to operate at maximum power point. Many methods have been proposed in literature to optimize the performance of PV systems but each method has shortcomings that have failed all of them. The actual problem occurs when partial shading is very strong; this is where most of the methods totally fail. So proposed work addresses this issue and solves it to the fullest. The novelty in the proposed work is that it introduces a new nature-based algorithm that works on the principle of plant propagation. It is a natural optimization technique that plants follow to survive and propagate in different environmental conditions. The proposed method efficiently tracks the global peak under all shading conditions and is simple to implement with high accuracy and tracking speed. Purpose. Building an algorithm that can track global peak of photovoltaic systems under all shading conditions and extracts the maximum possible power from the system, and is simple and easy to implement. Methods. The method is implemented in MATLAB / Simulink on an electrical model that uses a PV array model. Different shadings are applied to check for the results. Results. The results have shown that for different photovoltaic configurations the algorithm performs very good under uniform and partial shadings conditions. Its accuracy, tracking efficiency and tracking time has increased reasonably. Practical value. The project can be very beneficial to people as it enhances the performances of PV systems that can make them self-sufficient in electrical energy, focuses on sustainable development and reduces pollution. This way it can have huge impact on human life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Engineering & Electromechanics
Electrical Engineering & Electromechanics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
50.00%
发文量
53
审稿时长
10 weeks
期刊最新文献
The mutual influence of exciting and induced currents in the circular solenoid – massive conductor system Current-voltage characteristics of single-stage semiconductor magnetic pulse generators with a distinctive structure of the conversion link in the input circuit Optimal hybrid photovoltaic distributed generation and distribution static synchronous compensators planning to minimize active power losses using adaptive acceleration coefficients particle swarm optimization algorithms Estimation of electrical resistivity of conductive materials of random shapes Modeling and research of a magnetoelectric converter for hydro and pneumo actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1