{"title":"线粒体自噬途径与血管性痴呆的病理生理联系","authors":"M. Kumas, Ozge Altintas Kadirhan, M. Demirci","doi":"10.5812/ans-124588","DOIUrl":null,"url":null,"abstract":"Context: Vascular dementia (VaD) is the second most common type of dementia after Alzheimer’s disease worldwide. Vascular dementia is a neurodegenerative disorder characterized by gradual cognitive impairment. Ischemic and hemorrhagic strokes result in VaD, markedly distributing cerebral blood flow and decreasing patients’ cognitive and memory performance. Due to their high energy demands, neurons are more sensitive to cellular architecture changes and exposed to mitochondrial stress than other cell types. Mitochondrial dysfunction and selective autophagy of mitochondria, known as mitophagy, are associated with VaD. This review aims to elucidate the association between mitophagy and VaD. Evidence Acquisition: This review was conducted independently by at least two researchers dominant in various VaD studies. We searched databases including Elsevier, Google Scholar, and PubMed using the terms ‘vascular dementia’, ‘vascular cognitive impairment’, and ‘mitophagy’. We evaluated 70 articles on the relationship between VaD and mitophagy and interpreted the results. Adobe Photoshop 2022 was used for drawing figures by researchers. Results: The autophagy process plays a protective role in experimental VaD models via preserving vascular integrity and the structure of the blood-brain barrier, upregulating occludin and claudin protein expressions, reducing oxidative stress, and decreasing cognitive dysfunction. Some studies claim that autophagy could have adverse effects in a time-dependent manner against neuronal injury. Prolonged autophagy and overexpressed autophagic proteins induce ischemic injury and cause neuronal cells to undergo apoptotic cell death. Conclusions: Although there are limited studies on the activation of mitophagy-related pathways in VaD, and the definitive role of mitophagy in neuronal healing is unclear, further research is needed to elucidate mitophagy pathways in neurons.","PeriodicalId":43970,"journal":{"name":"Archives of Neuroscience","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Pathophysiological Link Between Mitophagy Pathway and Vascular Dementia\",\"authors\":\"M. Kumas, Ozge Altintas Kadirhan, M. Demirci\",\"doi\":\"10.5812/ans-124588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: Vascular dementia (VaD) is the second most common type of dementia after Alzheimer’s disease worldwide. Vascular dementia is a neurodegenerative disorder characterized by gradual cognitive impairment. Ischemic and hemorrhagic strokes result in VaD, markedly distributing cerebral blood flow and decreasing patients’ cognitive and memory performance. Due to their high energy demands, neurons are more sensitive to cellular architecture changes and exposed to mitochondrial stress than other cell types. Mitochondrial dysfunction and selective autophagy of mitochondria, known as mitophagy, are associated with VaD. This review aims to elucidate the association between mitophagy and VaD. Evidence Acquisition: This review was conducted independently by at least two researchers dominant in various VaD studies. We searched databases including Elsevier, Google Scholar, and PubMed using the terms ‘vascular dementia’, ‘vascular cognitive impairment’, and ‘mitophagy’. We evaluated 70 articles on the relationship between VaD and mitophagy and interpreted the results. Adobe Photoshop 2022 was used for drawing figures by researchers. Results: The autophagy process plays a protective role in experimental VaD models via preserving vascular integrity and the structure of the blood-brain barrier, upregulating occludin and claudin protein expressions, reducing oxidative stress, and decreasing cognitive dysfunction. Some studies claim that autophagy could have adverse effects in a time-dependent manner against neuronal injury. Prolonged autophagy and overexpressed autophagic proteins induce ischemic injury and cause neuronal cells to undergo apoptotic cell death. Conclusions: Although there are limited studies on the activation of mitophagy-related pathways in VaD, and the definitive role of mitophagy in neuronal healing is unclear, further research is needed to elucidate mitophagy pathways in neurons.\",\"PeriodicalId\":43970,\"journal\":{\"name\":\"Archives of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/ans-124588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/ans-124588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Unraveling Pathophysiological Link Between Mitophagy Pathway and Vascular Dementia
Context: Vascular dementia (VaD) is the second most common type of dementia after Alzheimer’s disease worldwide. Vascular dementia is a neurodegenerative disorder characterized by gradual cognitive impairment. Ischemic and hemorrhagic strokes result in VaD, markedly distributing cerebral blood flow and decreasing patients’ cognitive and memory performance. Due to their high energy demands, neurons are more sensitive to cellular architecture changes and exposed to mitochondrial stress than other cell types. Mitochondrial dysfunction and selective autophagy of mitochondria, known as mitophagy, are associated with VaD. This review aims to elucidate the association between mitophagy and VaD. Evidence Acquisition: This review was conducted independently by at least two researchers dominant in various VaD studies. We searched databases including Elsevier, Google Scholar, and PubMed using the terms ‘vascular dementia’, ‘vascular cognitive impairment’, and ‘mitophagy’. We evaluated 70 articles on the relationship between VaD and mitophagy and interpreted the results. Adobe Photoshop 2022 was used for drawing figures by researchers. Results: The autophagy process plays a protective role in experimental VaD models via preserving vascular integrity and the structure of the blood-brain barrier, upregulating occludin and claudin protein expressions, reducing oxidative stress, and decreasing cognitive dysfunction. Some studies claim that autophagy could have adverse effects in a time-dependent manner against neuronal injury. Prolonged autophagy and overexpressed autophagic proteins induce ischemic injury and cause neuronal cells to undergo apoptotic cell death. Conclusions: Although there are limited studies on the activation of mitophagy-related pathways in VaD, and the definitive role of mitophagy in neuronal healing is unclear, further research is needed to elucidate mitophagy pathways in neurons.
期刊介绍:
Archives of neuroscience is a clinical and basic journal which is informative to all practitioners like Neurosurgeons, Neurologists, Psychiatrists, Neuroscientists. It is the official journal of Brain and Spinal Injury Research Center. The Major theme of this journal is to follow the path of scientific collaboration, spontaneity, and goodwill for the future, by providing up-to-date knowledge for the readers. The journal aims at covering different fields, as the name implies, ranging from research in basic and clinical sciences to core topics such as patient care, education, procuring and correct utilization of resources and bringing to limelight the cherished goals of the institute in providing a standard care for the physically disabled patients. This quarterly journal offers a venue for our researchers and scientists to vent their innovative and constructive research works. The scope of the journal is as far wide as the universe as being declared by the name of the journal, but our aim is to pursue our sacred goals in providing a panacea for the intractable ailments, which leave a psychological element in the daily life of such patients. This authoritative clinical and basic journal was founded by Professor Madjid Samii in 2012.